March  2014, 9(1): 97-110. doi: 10.3934/nhm.2014.9.97

Characteristic half space problem for the Broadwell model

1. 

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore

Received  July 2013 Revised  August 2013 Published  April 2014

We study an initial boundary value problem for the Broadwell model in half space. The Green's function for the initial boundary value problem is decomposed into two parts: one is the Green's function for the initial value problem, we call it the fundamental solution for the whole space; the other is the convolution of this fundamental solution with full boundary data. A new approach to obtain the full boundary data is established here. Finally, a nonlinear time-asymptotic stability of an equilibrium state is proved.
Citation: Linglong Du. Characteristic half space problem for the Broadwell model. Networks & Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97
References:
[1]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary,, Netw. Heterog. Media, 2 (2007), 383.  doi: 10.3934/nhm.2007.2.383.  Google Scholar

[2]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem,, Netw. Heterog. Media, 1 (2006), 167.  doi: 10.3934/nhm.2006.1.167.  Google Scholar

[3]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary,, J. Hyperbolic Differ. Equ., 5 (2008), 279.  doi: 10.1142/S0219891608001489.  Google Scholar

[4]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws,, Commun. Pure Appl. Math., 50 (1997), 1113.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.  Google Scholar

[5]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation,, Commun. Pure Appl. Math., 60 (2007), 295.  doi: 10.1002/cpa.20172.  Google Scholar

[6]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245.   Google Scholar

[7]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Modeling and Simulation in Science, (2002).  doi: 10.1007/978-1-4612-0061-1.  Google Scholar

show all references

References:
[1]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary,, Netw. Heterog. Media, 2 (2007), 383.  doi: 10.3934/nhm.2007.2.383.  Google Scholar

[2]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem,, Netw. Heterog. Media, 1 (2006), 167.  doi: 10.3934/nhm.2006.1.167.  Google Scholar

[3]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary,, J. Hyperbolic Differ. Equ., 5 (2008), 279.  doi: 10.1142/S0219891608001489.  Google Scholar

[4]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws,, Commun. Pure Appl. Math., 50 (1997), 1113.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.  Google Scholar

[5]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation,, Commun. Pure Appl. Math., 60 (2007), 295.  doi: 10.1002/cpa.20172.  Google Scholar

[6]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems,, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245.   Google Scholar

[7]

Y. Sone, Kinetic Theory and Fluid Dynamics,, Modeling and Simulation in Science, (2002).  doi: 10.1007/978-1-4612-0061-1.  Google Scholar

[1]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[2]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[3]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[4]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[5]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[6]

Shijin Deng, Weike Wang, Shih-Hsien Yu. Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Networks & Heterogeneous Media, 2007, 2 (3) : 383-395. doi: 10.3934/nhm.2007.2.383

[7]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic & Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

[8]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[9]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[10]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[11]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[12]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[13]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[14]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[15]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[16]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[17]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[18]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[19]

Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399

[20]

Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]