-
Previous Article
The derivation of continuum limits of neuronal networks with gap-junction couplings
- NHM Home
- This Issue
-
Next Article
Numerical network models and entropy principles for isothermal junction flow
Characteristic half space problem for the Broadwell model
1. | Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore |
References:
[1] |
S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395.
doi: 10.3934/nhm.2007.2.383. |
[2] |
C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183.
doi: 10.3934/nhm.2006.1.167. |
[3] |
C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294.
doi: 10.1142/S0219891608001489. |
[4] |
T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D. |
[5] |
T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.
doi: 10.1002/cpa.20172. |
[6] |
T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267. |
[7] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
show all references
References:
[1] |
S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395.
doi: 10.3934/nhm.2007.2.383. |
[2] |
C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183.
doi: 10.3934/nhm.2006.1.167. |
[3] |
C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294.
doi: 10.1142/S0219891608001489. |
[4] |
T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D. |
[5] |
T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.
doi: 10.1002/cpa.20172. |
[6] |
T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267. |
[7] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[1] |
Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167 |
[2] |
Shijin Deng, Weike Wang, Shih-Hsien Yu. Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Networks and Heterogeneous Media, 2007, 2 (3) : 383-395. doi: 10.3934/nhm.2007.2.383 |
[3] |
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001 |
[4] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[5] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[6] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[7] |
Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic and Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865 |
[8] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[9] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[10] |
Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164 |
[11] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[12] |
Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013 |
[13] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[14] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[15] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[16] |
Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032 |
[17] |
Ekaterina Gromova, Ekaterina Marova, Dmitry Gromov. A substitute for the classical Neumann–Morgenstern characteristic function in cooperative differential games. Journal of Dynamics and Games, 2020, 7 (2) : 105-122. doi: 10.3934/jdg.2020007 |
[18] |
Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767 |
[19] |
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 |
[20] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]