Citation: |
[1] |
A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.doi: 10.1126/science.286.5439.509. |
[2] |
E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks, International Journal of Complex Systems in Science, 3 (2013), 1-10. |
[3] |
E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs, European Physical Journal. Special Topics, 215 (2013), 93-108.doi: 10.1140/epjst/e2013-01717-3. |
[4] |
C. Berge, Graphes et Hypergraphes, Elsevier Science, Paris, 1973. |
[5] |
C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, North-Holland, Amsterdam, 1989. Available from: http://books.google.es/books?id=jEyfse-EKf8C. |
[6] |
R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, International Journal of Bifurcation and Chaos, 17 (2007), 2289-2301.doi: 10.1142/S0218127407018397. |
[7] |
A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network, Transportation Research Part C: Emerging Technologies, 20 (2012), 34-46. |
[8] |
S. Derrible and C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678-3691.doi: 10.1016/j.physa.2010.04.008. |
[9] |
G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations, TOP, 5 (1997), 95-104.doi: 10.1007/BF02568532. |
[10] |
G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122 (2000), 1-10.doi: 10.1016/S0377-2217(99)00016-8. |
[11] |
V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701-1-198701-4.doi: 10.1103/PhysRevLett.87.198701. |
[12] |
V. Latora and M. Marchiori, Is the Boston subway a small-world network?, Physica A, 314 (2002), 109-113.doi: 10.1016/S0378-4371(02)01089-0. |
[13] |
S. Milgram, The small world problem, Psychology Today, 1 (1967), 60-67.doi: 10.1037/e400002009-005. |
[14] |
C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks, Journal of The Royal Society Interface, 9 (2012), 2540-2550.doi: 10.1098/rsif.2012.0259. |
[15] |
K. Seaton and L. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635-644.doi: 10.1016/j.physa.2004.03.019. |
[16] |
D. Watts and S. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. |