Advanced Search
Article Contents
Article Contents

Transferability of collective transportation line networks from a topological and passenger demand perspective

Abstract Related Papers Cited by
  • We analyze the transferability of collective transportation line networks (CTLN) with the help of hypergraphs, their linearization, and connectivity measures from Complex Network Theory. In contrast to other existing works in the literature, where transferability is analyzed at a topological level, we are also concerned with passenger system level, introducing data on the travel patterns. This will allow us to have a more complete view of the functioning of the transfer system of a CTLN.
    Mathematics Subject Classification: Primary: 05C82, 05C65, 05C40; Secondary: 90B10, 68M10, 90B06.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.doi: 10.1126/science.286.5439.509.


    E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks, International Journal of Complex Systems in Science, 3 (2013), 1-10.


    E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs, European Physical Journal. Special Topics, 215 (2013), 93-108.doi: 10.1140/epjst/e2013-01717-3.


    C. Berge, Graphes et Hypergraphes, Elsevier Science, Paris, 1973.


    C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, North-Holland, Amsterdam, 1989. Available from: http://books.google.es/books?id=jEyfse-EKf8C.


    R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, International Journal of Bifurcation and Chaos, 17 (2007), 2289-2301.doi: 10.1142/S0218127407018397.


    A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network, Transportation Research Part C: Emerging Technologies, 20 (2012), 34-46.


    S. Derrible and C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678-3691.doi: 10.1016/j.physa.2010.04.008.


    G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations, TOP, 5 (1997), 95-104.doi: 10.1007/BF02568532.


    G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122 (2000), 1-10.doi: 10.1016/S0377-2217(99)00016-8.


    V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701-1-198701-4.doi: 10.1103/PhysRevLett.87.198701.


    V. Latora and M. Marchiori, Is the Boston subway a small-world network?, Physica A, 314 (2002), 109-113.doi: 10.1016/S0378-4371(02)01089-0.


    S. Milgram, The small world problem, Psychology Today, 1 (1967), 60-67.doi: 10.1037/e400002009-005.


    C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks, Journal of The Royal Society Interface, 9 (2012), 2540-2550.doi: 10.1098/rsif.2012.0259.


    K. Seaton and L. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635-644.doi: 10.1016/j.physa.2004.03.019.


    D. Watts and S. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442.

  • 加载中

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint