March  2015, 10(1): 127-148. doi: 10.3934/nhm.2015.10.127

Structural analysis and traffic flow in the transport networks of Madrid

1. 

Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Carretera de Valencia km. 7, 28031 Madrid, Spain

2. 

Universidad Politécnica de Madrid, Grupo de Sistemas Complejos, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Received  July 2014 Revised  November 2014 Published  February 2015

As the framework to characterize the subway and urban bus networks of Madrid city three topological spaces: geographical stop space, transfer space and route space, are considered. We show that the subway network exhibits better structural parameters than the urban bus network, with higher performance since in average a stop is reachable passing through less number of stops and carrying out less number of transfers between lines. We have found that the cumulative degree distributions of the subway and urban bus networks correspond to an exponential function, while the degree-degree correlations present a power law distributions in both transport systems. The relationship between transport flows and population are also studied at the city level by analyzing the flow between all the district (administrative areas) of Madrid. We prove that these flows can be described by a Gravity Model which takes into account the population from the origin and destination districts as well as the number of sections of a transport line that passes through two different districts.
Citation: Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks & Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127
References:
[1]

R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

R. Albert, H. Jeong and A. Barabasi, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.  doi: 10.1038/35019019.  Google Scholar

[3]

L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Classes of small-world networks,, Proceedings of the National Academy of the United States of America, 97 (2000), 11149.  doi: 10.1073/pnas.200327197.  Google Scholar

[4]

K. H. Chang, K. Kim, H. Oshima and S. M. Yoon, Subway networks in cities,, Journal of the Korean Physical Society, 48 (2006).   Google Scholar

[5]

Y. Z. Chen, N. Li and D. R. He, A study on some urban bus transport networks,, Physica A, 376 (2007), 747.  doi: 10.1016/j.physa.2006.10.071.  Google Scholar

[6]

J. Hao, J. Yin and B. Zhang, Structural fault tolerance of scale-free networks,, Tsinghua Science & Technology, 12 (2007), 246.  doi: 10.1016/S1007-0214(07)70118-9.  Google Scholar

[7]

B. Jiang, A topological pattern of urban street networks: Universality and peculiarity,, Physica A, 384 (2007), 647.  doi: 10.1016/j.physa.2007.05.064.  Google Scholar

[8]

M. Ke, et al., Power law and small world properties in a comparison of traffic city networks,, Chinese Science Vulletin, 56 (2011), 3731.   Google Scholar

[9]

O. Kwon, Intercity express bus flow in Korea and its network analysis,, Physica A, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[10]

V. Latora and M. Marchiori, Is the Boston subway a smallworld network?,, Physica A, 314 (2002), 109.   Google Scholar

[11]

G. Mao and N. Zhang, A Multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network,, Journal of Applied Mathematics, (2014).  doi: 10.1155/2014/154172.  Google Scholar

[12]

S. Mizokami, R. Kakimoto and J. Hashimoto, A method of line characteristic evaluation and network reorganization planning of bus systems,, Journal of Japan Society of Civil Engineers, 793 (1995), 27.   Google Scholar

[13]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[14]

M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002), 208701.  doi: 10.1103/PhysRevLett.89.208701.  Google Scholar

[15]

S. Ondŏs, I. Paulovičováa, L. Belušák and D. Husendová, Urban heartbeats (daily cycle of public transport intensity),, in GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation, (2014), 747.   Google Scholar

[16]

J. Sienkiewicz and J. A. Holyst, Statistical analysis of 22 public transport networks in Poland,, Physica Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.046127.  Google Scholar

[17]

H. Soh, et al., Weighted complex network analysis of travel routes on the Singapore public transportation system,, Physica A, 389 (2010), 5852.   Google Scholar

[18]

Z. Su, et al., Robustness of Interrelated Traffic Networks to Cascading Failures,, Scientific Reports, (2014).   Google Scholar

[19]

D. Takeuchi and K. Yamada, Theory of public subsidies for city bus and development of route-potential as a measurement for that decision making,, Journal of Infrastructure Planning and Management, 1991 (1995), 183.  doi: 10.2208/jscej.1991.183.  Google Scholar

[20]

J. Tinbergen, Shaping the World Economy: Suggestions for an International Economic Policy,, Twentieth Century Fund, (1962).   Google Scholar

[21]

C. von Ferber, T. Holovatch, Y. Holovatch and V. Palchykov, Public transport networks: empirical analysis and modeling,, The European Physical Journal B, 68 (2009), 261.   Google Scholar

[22]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.   Google Scholar

[23]

Web site of the Empresa Municipal Transportes (EMT), 2014., Available from: , ().   Google Scholar

[24]

Web site of the Metro Madrid (MM), 2014., Available from: , ().   Google Scholar

[25]

P. Zhang et al., The Robustness of Interdependent Transportation Networks Under Targeted Attack,, EPL (Europhysics Letters), (2013).   Google Scholar

[26]

H. Zhang, P. Zhao, J. Gao and X. Yao, The analysis of the properties of bus network topology in Beijing basing on complex networks,, Mathematical Problems in Engineering, 2013 (2013).  doi: 10.1155/2013/694956.  Google Scholar

show all references

References:
[1]

R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.  doi: 10.1103/RevModPhys.74.47.  Google Scholar

[2]

R. Albert, H. Jeong and A. Barabasi, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.  doi: 10.1038/35019019.  Google Scholar

[3]

L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Classes of small-world networks,, Proceedings of the National Academy of the United States of America, 97 (2000), 11149.  doi: 10.1073/pnas.200327197.  Google Scholar

[4]

K. H. Chang, K. Kim, H. Oshima and S. M. Yoon, Subway networks in cities,, Journal of the Korean Physical Society, 48 (2006).   Google Scholar

[5]

Y. Z. Chen, N. Li and D. R. He, A study on some urban bus transport networks,, Physica A, 376 (2007), 747.  doi: 10.1016/j.physa.2006.10.071.  Google Scholar

[6]

J. Hao, J. Yin and B. Zhang, Structural fault tolerance of scale-free networks,, Tsinghua Science & Technology, 12 (2007), 246.  doi: 10.1016/S1007-0214(07)70118-9.  Google Scholar

[7]

B. Jiang, A topological pattern of urban street networks: Universality and peculiarity,, Physica A, 384 (2007), 647.  doi: 10.1016/j.physa.2007.05.064.  Google Scholar

[8]

M. Ke, et al., Power law and small world properties in a comparison of traffic city networks,, Chinese Science Vulletin, 56 (2011), 3731.   Google Scholar

[9]

O. Kwon, Intercity express bus flow in Korea and its network analysis,, Physica A, 391 (2012), 4261.  doi: 10.1016/j.physa.2012.03.031.  Google Scholar

[10]

V. Latora and M. Marchiori, Is the Boston subway a smallworld network?,, Physica A, 314 (2002), 109.   Google Scholar

[11]

G. Mao and N. Zhang, A Multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network,, Journal of Applied Mathematics, (2014).  doi: 10.1155/2014/154172.  Google Scholar

[12]

S. Mizokami, R. Kakimoto and J. Hashimoto, A method of line characteristic evaluation and network reorganization planning of bus systems,, Journal of Japan Society of Civil Engineers, 793 (1995), 27.   Google Scholar

[13]

M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[14]

M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002), 208701.  doi: 10.1103/PhysRevLett.89.208701.  Google Scholar

[15]

S. Ondŏs, I. Paulovičováa, L. Belušák and D. Husendová, Urban heartbeats (daily cycle of public transport intensity),, in GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation, (2014), 747.   Google Scholar

[16]

J. Sienkiewicz and J. A. Holyst, Statistical analysis of 22 public transport networks in Poland,, Physica Review E, 72 (2005).  doi: 10.1103/PhysRevE.72.046127.  Google Scholar

[17]

H. Soh, et al., Weighted complex network analysis of travel routes on the Singapore public transportation system,, Physica A, 389 (2010), 5852.   Google Scholar

[18]

Z. Su, et al., Robustness of Interrelated Traffic Networks to Cascading Failures,, Scientific Reports, (2014).   Google Scholar

[19]

D. Takeuchi and K. Yamada, Theory of public subsidies for city bus and development of route-potential as a measurement for that decision making,, Journal of Infrastructure Planning and Management, 1991 (1995), 183.  doi: 10.2208/jscej.1991.183.  Google Scholar

[20]

J. Tinbergen, Shaping the World Economy: Suggestions for an International Economic Policy,, Twentieth Century Fund, (1962).   Google Scholar

[21]

C. von Ferber, T. Holovatch, Y. Holovatch and V. Palchykov, Public transport networks: empirical analysis and modeling,, The European Physical Journal B, 68 (2009), 261.   Google Scholar

[22]

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440.   Google Scholar

[23]

Web site of the Empresa Municipal Transportes (EMT), 2014., Available from: , ().   Google Scholar

[24]

Web site of the Metro Madrid (MM), 2014., Available from: , ().   Google Scholar

[25]

P. Zhang et al., The Robustness of Interdependent Transportation Networks Under Targeted Attack,, EPL (Europhysics Letters), (2013).   Google Scholar

[26]

H. Zhang, P. Zhao, J. Gao and X. Yao, The analysis of the properties of bus network topology in Beijing basing on complex networks,, Mathematical Problems in Engineering, 2013 (2013).  doi: 10.1155/2013/694956.  Google Scholar

[1]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[2]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[3]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[4]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[5]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[6]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[7]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[8]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[9]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[10]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[11]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[12]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[13]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[14]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[17]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[18]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[19]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[20]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]