-
Previous Article
Indirect influences in international trade
- NHM Home
- This Issue
-
Next Article
Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index)
Structural analysis and traffic flow in the transport networks of Madrid
1. | Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Carretera de Valencia km. 7, 28031 Madrid, Spain |
2. | Universidad Politécnica de Madrid, Grupo de Sistemas Complejos, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain |
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
R. Albert, H. Jeong and A. Barabasi, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.
doi: 10.1038/35019019. |
[3] |
L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Classes of small-world networks,, Proceedings of the National Academy of the United States of America, 97 (2000), 11149.
doi: 10.1073/pnas.200327197. |
[4] |
K. H. Chang, K. Kim, H. Oshima and S. M. Yoon, Subway networks in cities,, Journal of the Korean Physical Society, 48 (2006). Google Scholar |
[5] |
Y. Z. Chen, N. Li and D. R. He, A study on some urban bus transport networks,, Physica A, 376 (2007), 747.
doi: 10.1016/j.physa.2006.10.071. |
[6] |
J. Hao, J. Yin and B. Zhang, Structural fault tolerance of scale-free networks,, Tsinghua Science & Technology, 12 (2007), 246.
doi: 10.1016/S1007-0214(07)70118-9. |
[7] |
B. Jiang, A topological pattern of urban street networks: Universality and peculiarity,, Physica A, 384 (2007), 647.
doi: 10.1016/j.physa.2007.05.064. |
[8] |
M. Ke, et al., Power law and small world properties in a comparison of traffic city networks,, Chinese Science Vulletin, 56 (2011), 3731. Google Scholar |
[9] |
O. Kwon, Intercity express bus flow in Korea and its network analysis,, Physica A, 391 (2012), 4261.
doi: 10.1016/j.physa.2012.03.031. |
[10] |
V. Latora and M. Marchiori, Is the Boston subway a smallworld network?,, Physica A, 314 (2002), 109. Google Scholar |
[11] |
G. Mao and N. Zhang, A Multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network,, Journal of Applied Mathematics, (2014).
doi: 10.1155/2014/154172. |
[12] |
S. Mizokami, R. Kakimoto and J. Hashimoto, A method of line characteristic evaluation and network reorganization planning of bus systems,, Journal of Japan Society of Civil Engineers, 793 (1995), 27. Google Scholar |
[13] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002), 208701.
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
S. Ondŏs, I. Paulovičováa, L. Belušák and D. Husendová, Urban heartbeats (daily cycle of public transport intensity),, in GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation, (2014), 747. Google Scholar |
[16] |
J. Sienkiewicz and J. A. Holyst, Statistical analysis of 22 public transport networks in Poland,, Physica Review E, 72 (2005).
doi: 10.1103/PhysRevE.72.046127. |
[17] |
H. Soh, et al., Weighted complex network analysis of travel routes on the Singapore public transportation system,, Physica A, 389 (2010), 5852. Google Scholar |
[18] |
Z. Su, et al., Robustness of Interrelated Traffic Networks to Cascading Failures,, Scientific Reports, (2014). Google Scholar |
[19] |
D. Takeuchi and K. Yamada, Theory of public subsidies for city bus and development of route-potential as a measurement for that decision making,, Journal of Infrastructure Planning and Management, 1991 (1995), 183.
doi: 10.2208/jscej.1991.183. |
[20] |
J. Tinbergen, Shaping the World Economy: Suggestions for an International Economic Policy,, Twentieth Century Fund, (1962). Google Scholar |
[21] |
C. von Ferber, T. Holovatch, Y. Holovatch and V. Palchykov, Public transport networks: empirical analysis and modeling,, The European Physical Journal B, 68 (2009), 261. Google Scholar |
[22] |
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440. Google Scholar |
[23] |
Web site of the Empresa Municipal Transportes (EMT), 2014., Available from: , (). Google Scholar |
[24] |
Web site of the Metro Madrid (MM), 2014., Available from: , (). Google Scholar |
[25] |
P. Zhang et al., The Robustness of Interdependent Transportation Networks Under Targeted Attack,, EPL (Europhysics Letters), (2013). Google Scholar |
[26] |
H. Zhang, P. Zhao, J. Gao and X. Yao, The analysis of the properties of bus network topology in Beijing basing on complex networks,, Mathematical Problems in Engineering, 2013 (2013).
doi: 10.1155/2013/694956. |
show all references
References:
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks,, Reviews of Modern Physics, 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[2] |
R. Albert, H. Jeong and A. Barabasi, Error and attack tolerance of complex networks,, Nature, 406 (2000), 378.
doi: 10.1038/35019019. |
[3] |
L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, Classes of small-world networks,, Proceedings of the National Academy of the United States of America, 97 (2000), 11149.
doi: 10.1073/pnas.200327197. |
[4] |
K. H. Chang, K. Kim, H. Oshima and S. M. Yoon, Subway networks in cities,, Journal of the Korean Physical Society, 48 (2006). Google Scholar |
[5] |
Y. Z. Chen, N. Li and D. R. He, A study on some urban bus transport networks,, Physica A, 376 (2007), 747.
doi: 10.1016/j.physa.2006.10.071. |
[6] |
J. Hao, J. Yin and B. Zhang, Structural fault tolerance of scale-free networks,, Tsinghua Science & Technology, 12 (2007), 246.
doi: 10.1016/S1007-0214(07)70118-9. |
[7] |
B. Jiang, A topological pattern of urban street networks: Universality and peculiarity,, Physica A, 384 (2007), 647.
doi: 10.1016/j.physa.2007.05.064. |
[8] |
M. Ke, et al., Power law and small world properties in a comparison of traffic city networks,, Chinese Science Vulletin, 56 (2011), 3731. Google Scholar |
[9] |
O. Kwon, Intercity express bus flow in Korea and its network analysis,, Physica A, 391 (2012), 4261.
doi: 10.1016/j.physa.2012.03.031. |
[10] |
V. Latora and M. Marchiori, Is the Boston subway a smallworld network?,, Physica A, 314 (2002), 109. Google Scholar |
[11] |
G. Mao and N. Zhang, A Multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network,, Journal of Applied Mathematics, (2014).
doi: 10.1155/2014/154172. |
[12] |
S. Mizokami, R. Kakimoto and J. Hashimoto, A method of line characteristic evaluation and network reorganization planning of bus systems,, Journal of Japan Society of Civil Engineers, 793 (1995), 27. Google Scholar |
[13] |
M. E. J. Newman, The structure and function of complex networks,, SIAM Review, 45 (2003), 167.
doi: 10.1137/S003614450342480. |
[14] |
M. E. J. Newman, Assortative mixing in networks,, Physical Review Letters, 89 (2002), 208701.
doi: 10.1103/PhysRevLett.89.208701. |
[15] |
S. Ondŏs, I. Paulovičováa, L. Belušák and D. Husendová, Urban heartbeats (daily cycle of public transport intensity),, in GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation, (2014), 747. Google Scholar |
[16] |
J. Sienkiewicz and J. A. Holyst, Statistical analysis of 22 public transport networks in Poland,, Physica Review E, 72 (2005).
doi: 10.1103/PhysRevE.72.046127. |
[17] |
H. Soh, et al., Weighted complex network analysis of travel routes on the Singapore public transportation system,, Physica A, 389 (2010), 5852. Google Scholar |
[18] |
Z. Su, et al., Robustness of Interrelated Traffic Networks to Cascading Failures,, Scientific Reports, (2014). Google Scholar |
[19] |
D. Takeuchi and K. Yamada, Theory of public subsidies for city bus and development of route-potential as a measurement for that decision making,, Journal of Infrastructure Planning and Management, 1991 (1995), 183.
doi: 10.2208/jscej.1991.183. |
[20] |
J. Tinbergen, Shaping the World Economy: Suggestions for an International Economic Policy,, Twentieth Century Fund, (1962). Google Scholar |
[21] |
C. von Ferber, T. Holovatch, Y. Holovatch and V. Palchykov, Public transport networks: empirical analysis and modeling,, The European Physical Journal B, 68 (2009), 261. Google Scholar |
[22] |
D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks,, Nature, 393 (1998), 440. Google Scholar |
[23] |
Web site of the Empresa Municipal Transportes (EMT), 2014., Available from: , (). Google Scholar |
[24] |
Web site of the Metro Madrid (MM), 2014., Available from: , (). Google Scholar |
[25] |
P. Zhang et al., The Robustness of Interdependent Transportation Networks Under Targeted Attack,, EPL (Europhysics Letters), (2013). Google Scholar |
[26] |
H. Zhang, P. Zhao, J. Gao and X. Yao, The analysis of the properties of bus network topology in Beijing basing on complex networks,, Mathematical Problems in Engineering, 2013 (2013).
doi: 10.1155/2013/694956. |
[1] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[2] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[3] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[4] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[5] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[6] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[7] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[8] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[9] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[10] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[11] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021004 |
[12] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[13] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[14] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[15] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[16] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[17] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[18] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[19] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[20] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]