\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis

Abstract Related Papers Cited by
  • In this work we propose a model for the diffusion of information in a complex network. The main assumption of the model is that the information is initially located at certain nodes and then is disseminated, with occasional losses when traversing the edges, to the rest of the network. We present two efficient algorithms, which we called max-path and sum-path, to compute, respectively, lower and upper bounds for the amount of information received at each node. Finally we provide an application of these algorithms to intentional risk analysis.
    Mathematics Subject Classification: Primary: 05C90, 05C75; Secondary: 68M10, 94C15, 90B18.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks, $1^{st}$ Edition, Cambridge University Press, New York, 2008.doi: 10.1017/CBO9780511791383.

    [2]

    Y. Bar-Yam, Dynamics of Complex Systems, $1^{st}$ Edition, Addison-Wesley, Boston, 1997.

    [3]

    S. Boccaletti, G. Bianconi , R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks, Physics Reports, 544 (2014), 1-122.doi: 10.1016/j.physrep.2014.07.001.

    [4]

    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308.doi: 10.1016/j.physrep.2005.10.009.

    [5]

    J. Borondo, F. Borondo, C. Rodriguez-Sickert and C. A. Hidalgo, To each according to its degree: The meritocracy and topocracy of embedded markets, Scientific Reports, 4 (2014), 1-7.doi: 10.1038/srep03784.

    [6]

    V. Chapela, Tips for Managing Intentional Risk, ISACA, 2011. Available from: http://www.isaca.org/About-ISACA/-ISACA-Newsletter/.

    [7]

    L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics, 8 (1956), 399-404.doi: 10.4153/CJM-1956-045-5.

    [8]

    Y. Lin, J. C. S. Lui, K. Jung and S. Lim, Modelling multi-state diffusion process in complex networks: Theory and applications, 2013 International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2013, 506-513.doi: 10.1109/SITIS.2013.86.

    [9]

    D. López-Pintado, Diffusion in complex social networks, Games and Economic Behavior, 62 (2008), 573-590.doi: 10.1016/j.geb.2007.08.001.

    [10]

    M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.doi: 10.1137/S003614450342480.

    [11]

    M. Safar, K. Mahdi and S. Torabi, Network robustness and irreversibility of information diffusion in Complex networks, Journal of Computational Science, 2 (2011), 198-206.doi: 10.1016/j.jocs.2011.05.005.

    [12]

    S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return