June  2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295

Stationary states in gas networks

1. 

Lehrstuhl Angewandte Mathematik 2, Cauerstr. 11, 91058 Erlangen, Department Mathematik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany, Germany, Germany, Germany

Received  September 2014 Revised  December 2014 Published  April 2015

Pipeline networks for gas transportation often contain circles. For such networks it is more difficult to determine the stationary states than for networks without circles. We present a method that allows to compute the stationary states for subsonic pipe flow governed by the isothermal Euler equations for certain pipeline networks that contain circles. We also show that suitably chosen boundary data determine the stationary states uniquely. The construction is based upon novel explicit representations of the stationary states on single pipes for the cases with zero slope and with nonzero slope. In the case with zero slope, the state can be represented using the Lambert--W function.
Citation: Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks. Networks & Heterogeneous Media, 2015, 10 (2) : 295-320. doi: 10.3934/nhm.2015.10.295
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Networks and Heterogenous Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295. Google Scholar

[2]

A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives,, EMS Reviews in Mathematical Sciences, 1 (2014), 47. doi: 10.4171/EMSS/2. Google Scholar

[3]

R. Carvalho, L. Buzna, F. Bono, M. Masera, D. K. Arrowsmith and D. Helbing, Resilience of natural gas networks during conflicts, crises and disruptions,, PLOS ONE, 9 (2014). doi: 10.1371/journal.pone.0090265. Google Scholar

[4]

F. Chapeau-Blondeau, Numerical evaluation of the lambert W function and application to generation of generalized Gaussian noise with exponent 1/2,, IEEE Transactions on Signal Processing, 50 (2002), 2160. doi: 10.1109/TSP.2002.801912. Google Scholar

[5]

R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, Journal of Mathematical Analysis and Applications, 361 (2010), 440. doi: 10.1016/j.jmaa.2009.07.022. Google Scholar

[6]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[7]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function,, Adv. Comp. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[8]

J.-M. Coron, B. d'Andrea-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[9]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Networks and Heterogeneous Media, 5 (2010), 691. doi: 10.3934/nhm.2010.5.691. Google Scholar

[10]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 1925. doi: 10.1016/j.anihpc.2009.04.001. Google Scholar

[11]

M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization,, SIAM Journal on Control and Optimization, 49 (2011), 2101. doi: 10.1137/100799824. Google Scholar

[12]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM: Control, 17 (2011), 28. doi: 10.1051/cocv/2009035. Google Scholar

[13]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Mathematical Methods in the Applied Sciences, 34 (2011), 745. doi: 10.1002/mma.1394. Google Scholar

[14]

M. Herty, Modeling, simulation and optimization of gas networks with compressors,, Networks and Heterogeneous Media, 2 (2007), 81. doi: 10.3934/nhm.2007.2.81. Google Scholar

[15]

J. H. Lambert, Observationes variae in mathesin puram,, Acta Helvetica, 3 (1758), 128. Google Scholar

[16]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[17]

A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization,, Mathematical Programming, 105 (2005), 563. doi: 10.1007/s10107-005-0665-5. Google Scholar

[18]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow,, Networks and Heterogeneous Media, 9 (2014), 65. doi: 10.3934/nhm.2014.9.65. Google Scholar

[19]

V. Schleper, M. Gugat, M. Herty, A. Klar and G. Leugering, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained Optimization and Optimal Control for Partial Differential Equations, (2012), 123. doi: 10.1007/978-3-0348-0133-1_7. Google Scholar

[20]

D. Veberic, Having fun with Lambert W(x) function,, , (). Google Scholar

[21]

G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines,, International Journal of Solids and Structures, 42 (2005), 1253. doi: 10.1016/j.ijsolstr.2004.07.001. Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Networks and Heterogenous Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295. Google Scholar

[2]

A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives,, EMS Reviews in Mathematical Sciences, 1 (2014), 47. doi: 10.4171/EMSS/2. Google Scholar

[3]

R. Carvalho, L. Buzna, F. Bono, M. Masera, D. K. Arrowsmith and D. Helbing, Resilience of natural gas networks during conflicts, crises and disruptions,, PLOS ONE, 9 (2014). doi: 10.1371/journal.pone.0090265. Google Scholar

[4]

F. Chapeau-Blondeau, Numerical evaluation of the lambert W function and application to generation of generalized Gaussian noise with exponent 1/2,, IEEE Transactions on Signal Processing, 50 (2002), 2160. doi: 10.1109/TSP.2002.801912. Google Scholar

[5]

R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system,, Journal of Mathematical Analysis and Applications, 361 (2010), 440. doi: 10.1016/j.jmaa.2009.07.022. Google Scholar

[6]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372. Google Scholar

[7]

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function,, Adv. Comp. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[8]

J.-M. Coron, B. d'Andrea-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903. Google Scholar

[9]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Networks and Heterogeneous Media, 5 (2010), 691. doi: 10.3934/nhm.2010.5.691. Google Scholar

[10]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 1925. doi: 10.1016/j.anihpc.2009.04.001. Google Scholar

[11]

M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization,, SIAM Journal on Control and Optimization, 49 (2011), 2101. doi: 10.1137/100799824. Google Scholar

[12]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM: Control, 17 (2011), 28. doi: 10.1051/cocv/2009035. Google Scholar

[13]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Mathematical Methods in the Applied Sciences, 34 (2011), 745. doi: 10.1002/mma.1394. Google Scholar

[14]

M. Herty, Modeling, simulation and optimization of gas networks with compressors,, Networks and Heterogeneous Media, 2 (2007), 81. doi: 10.3934/nhm.2007.2.81. Google Scholar

[15]

J. H. Lambert, Observationes variae in mathesin puram,, Acta Helvetica, 3 (1758), 128. Google Scholar

[16]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243. Google Scholar

[17]

A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization,, Mathematical Programming, 105 (2005), 563. doi: 10.1007/s10107-005-0665-5. Google Scholar

[18]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow,, Networks and Heterogeneous Media, 9 (2014), 65. doi: 10.3934/nhm.2014.9.65. Google Scholar

[19]

V. Schleper, M. Gugat, M. Herty, A. Klar and G. Leugering, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained Optimization and Optimal Control for Partial Differential Equations, (2012), 123. doi: 10.1007/978-3-0348-0133-1_7. Google Scholar

[20]

D. Veberic, Having fun with Lambert W(x) function,, , (). Google Scholar

[21]

G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines,, International Journal of Solids and Structures, 42 (2005), 1253. doi: 10.1016/j.ijsolstr.2004.07.001. Google Scholar

[1]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks & Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[2]

Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65

[3]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[4]

Jacek Banasiak, Aleksandra Puchalska. Generalized network transport and Euler-Hille formula. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1873-1893. doi: 10.3934/dcdsb.2018185

[5]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[6]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[7]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[8]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[9]

Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149

[10]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[11]

Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451

[12]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[13]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[14]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[15]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[16]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[17]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[18]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[19]

Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149

[20]

T. S. Evans, A. D. K. Plato. Network rewiring models. Networks & Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]