March  2015, 10(1): 37-52. doi: 10.3934/nhm.2015.10.37

Dragging in mutualistic networks

1. 

Complex System Group, Technical University of Madrid, Av. Puerta Hierro 4, 28040-Madrid, Spain, Spain, Spain

2. 

Área de Biodiversidad y Conservación, Dept. Biología y Geologa, Universidad Rey Juan Carlos, 28933 Móstoles, Spain

3. 

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain

Received  July 2014 Revised  December 2014 Published  February 2015

Mutualistic networks are considered an example of resilience against perturbations. Mutualistic interactions are beneficial for the two sets of species involved. Network robustness has been usually measured in terms of extinction sequences, i.e., nodes are removed from the empirical bipartite network one subset (primary extinctions) and the number of extinctions on the other subset (secondary extinction) is computed. This is a first approach to study ecosystems extinction. However, each interacting species, depicted as a node of the mutualistic network, is really composed by certain number of individuals (population) and its shortage can diminish dramatically the population of its interacting partners, i.e. the population dynamics plays an important role in the robustness of the ecological networks. Although different models of population dynamics for mutualistic interacting species have been addressed, like Type II models, only recently a new mutualistic model has been proposed exhibiting bounded solutions and good properties for simulation. In this paper we show that population dynamics is as important as network topology when we are interested in the resilience of the community.
Citation: Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37
References:
[1]

M. Almeida-Neto, P. Guimarães, P. R. Guimarães Jr., R. D. Loyola and W. Ulrich, A consistent metric for nestedness analysis in ecological systems: Reconciling concept and quantification,, Oikos, 117 (2008), 1227.   Google Scholar

[2]

A. I. L. Araujo, M. A. de Almeida, Z. M. Cardoso and G. Corso, Abundance and nestedness in interaction networks,, Ecological complexity, 7 (2010), 494.  doi: 10.1016/j.ecocom.2010.02.004.  Google Scholar

[3]

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. Ramasco and J. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases,, Proc. Natl. Acad. Scie., 106 (2009), 21484.  doi: 10.1073/pnas.0906910106.  Google Scholar

[4]

J. Bascompte and P. Jordano, Plant-Animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567.  doi: 10.1146/annurev.ecolsys.38.091206.095818.  Google Scholar

[5]

E. Burgos, H. Ceva, R. P. J. Perazzo, M. Devoto, D. Medan, M. Zimmermannd and A. M. Delbuee, Why nestedness in mutualistic networks?,, Journal of Theorethical Biology, 249 (2007), 307.  doi: 10.1016/j.jtbi.2007.07.030.  Google Scholar

[6]

C. Campbell, S. Yang, K. Shea and R. Albert, Topology of plant-pollinator network that are vulnerable to collapse from species extinction,, Physical Review E, 86 (2012).  doi: 10.1103/PhysRevE.86.021924.  Google Scholar

[7]

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt and E. Shir, A model of Internet topology using k-shell decomposition,, Proc. Natl. Acad. Scie., 104 (2007), 11150.  doi: 10.1073/pnas.0701175104.  Google Scholar

[8]

S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, k-core architecture and k-core percolation in complex networks,, Physica D, 224 (2006), 7.  doi: 10.1016/j.physd.2006.09.027.  Google Scholar

[9]

C. F. Dormann, J. Fründ, N. Blüthgen and B. Gruber, Indices, graphs and null models: Analyzing bipartite ecological networks,, The Open Ecology Journal, 2 (2009), 7.   Google Scholar

[10]

J. A. Dunne, R. J. Williams and N. D. Martinez, Network structure and biodiversity loss in food webs: robustness increases with connectance,, Ecology Letters, 5 (2002), 558.  doi: 10.1046/j.1461-0248.2002.00354.x.  Google Scholar

[11]

M. A. Fortuna, D. B. Stouffer, J. M. Olesen, P. Jordano, D. Mouillot, B. R. Krasnov, R. Poulin and J. Bascompte, Nestedness versus modularity in ecological networks: two sides of the same coin?,, J. Anim. Ecol., 79 (2010), 811.  doi: 10.1111/j.1365-2656.2010.01688.x.  Google Scholar

[12]

J. García-Algarra, J. Galeano, J. M. Pastor, J. M. Iriondo and J. J. Ramasco, Rethinking the logistic approach for population dynamics of mutualistic interactions,, Journal of Theoretical Biology, 363 (2014), 332.  doi: 10.1016/j.jtbi.2014.08.039.  Google Scholar

[13]

Z. Jing, T. Lin, Y. Hong, L. Jian-Hua, C. Zhi-Wei and L. Yi-Xue, The effects of degree correlations on network topologies and robustness,, Chinese Physics, 16 (2007), 3571.   Google Scholar

[14]

C. N. Kaiser-Bunbury, S. Muff, J. Memmott, C. B. Müller and A. Caflisch, The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour,, Ecology Letters, 13 (2010), 442.   Google Scholar

[15]

J. J. Lever, E. H. van Nes, M. Scheffer and J. Bascompte, The sudden collapse of pollinator communities,, Ecology Letters 17 (2014), 17 (2014), 350.  doi: 10.1111/ele.12236.  Google Scholar

[16]

I. M. D. Maclean and R. J. Wilson, Recent ecological responses to climate change support predictions of high extinction risk,, Proceedings of the Natinal Academy of Sciences of the United States of America, 108 (2011), 12337.   Google Scholar

[17]

J. Memmott, M. N. Waser and M. P. Price, Tolerance of pollination networks to species extinctions,, Proceedings of the Royal Society B, 271 (2004), 2605.  doi: 10.1098/rspb.2004.2909.  Google Scholar

[18]

J. Memmott, P. G. Craze, N. M. Waser and M. P. Price, Global warming and the disruption of plant-pollinator interactions,, Ecology Letters, 10 (2007), 710.  doi: 10.1111/j.1461-0248.2007.01061.x.  Google Scholar

[19]

J. Memmott, C. Carvell, R. F. Pywell and P. G. Craze, The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees,, Philosophical Transactions of the Royal Society. B, 365 (2010), 2071.  doi: 10.1098/rstb.2010.0015.  Google Scholar

[20]

, NCEAS interaction webs database,, Available from: , ().   Google Scholar

[21]

J. M. Pastor, S. Santamaría, M. Méndez and J. Galeano, Effects of topology on robustness in ecological bipartite networks,, Networks and Heterogeneous Media, 7 (2012), 429.  doi: 10.3934/nhm.2012.7.429.  Google Scholar

[22]

S. Santamaría, J. M. Pastor, J. Galeano and M. Méndez, Robustness of alpine pollination networks: Effects of network structure and consequences for endemic plants,, Arctic, 46 (2014), 568.  doi: 10.1657/1938-4246-46.3.568.  Google Scholar

[23]

T. Säterberg, S. Sellman and Bo. Ebenman, High frequency of functional extinctions in ecological networks,, Nature, 7459 (): 468.   Google Scholar

[24]

E. Thébault and C. Fontaine, Stability of ecological communities and the architecture of mutualistic and trophic networks,, Science, 329 (2010), 853.  doi: 10.1126/science.1188321.  Google Scholar

[25]

W. Ulrich, M. Almeida-Neto and N. J. Gotelli, A consumer's guide to nestedness analysis,, Oikos, 118 (2009), 3.  doi: 10.1111/j.1600-0706.2008.17053.x.  Google Scholar

[26]

H. B. Wilson, B. E. Kendall and H. P. Possingham, Variability in population abundance and the classification of extinction risk,, Conservatin Biology, 25 (2011), 747.   Google Scholar

[27]

D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The American Naturalist, 134 (1989), 664.   Google Scholar

show all references

References:
[1]

M. Almeida-Neto, P. Guimarães, P. R. Guimarães Jr., R. D. Loyola and W. Ulrich, A consistent metric for nestedness analysis in ecological systems: Reconciling concept and quantification,, Oikos, 117 (2008), 1227.   Google Scholar

[2]

A. I. L. Araujo, M. A. de Almeida, Z. M. Cardoso and G. Corso, Abundance and nestedness in interaction networks,, Ecological complexity, 7 (2010), 494.  doi: 10.1016/j.ecocom.2010.02.004.  Google Scholar

[3]

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. Ramasco and J. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases,, Proc. Natl. Acad. Scie., 106 (2009), 21484.  doi: 10.1073/pnas.0906910106.  Google Scholar

[4]

J. Bascompte and P. Jordano, Plant-Animal mutualistic networks: The architecture of biodiversity,, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 567.  doi: 10.1146/annurev.ecolsys.38.091206.095818.  Google Scholar

[5]

E. Burgos, H. Ceva, R. P. J. Perazzo, M. Devoto, D. Medan, M. Zimmermannd and A. M. Delbuee, Why nestedness in mutualistic networks?,, Journal of Theorethical Biology, 249 (2007), 307.  doi: 10.1016/j.jtbi.2007.07.030.  Google Scholar

[6]

C. Campbell, S. Yang, K. Shea and R. Albert, Topology of plant-pollinator network that are vulnerable to collapse from species extinction,, Physical Review E, 86 (2012).  doi: 10.1103/PhysRevE.86.021924.  Google Scholar

[7]

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt and E. Shir, A model of Internet topology using k-shell decomposition,, Proc. Natl. Acad. Scie., 104 (2007), 11150.  doi: 10.1073/pnas.0701175104.  Google Scholar

[8]

S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, k-core architecture and k-core percolation in complex networks,, Physica D, 224 (2006), 7.  doi: 10.1016/j.physd.2006.09.027.  Google Scholar

[9]

C. F. Dormann, J. Fründ, N. Blüthgen and B. Gruber, Indices, graphs and null models: Analyzing bipartite ecological networks,, The Open Ecology Journal, 2 (2009), 7.   Google Scholar

[10]

J. A. Dunne, R. J. Williams and N. D. Martinez, Network structure and biodiversity loss in food webs: robustness increases with connectance,, Ecology Letters, 5 (2002), 558.  doi: 10.1046/j.1461-0248.2002.00354.x.  Google Scholar

[11]

M. A. Fortuna, D. B. Stouffer, J. M. Olesen, P. Jordano, D. Mouillot, B. R. Krasnov, R. Poulin and J. Bascompte, Nestedness versus modularity in ecological networks: two sides of the same coin?,, J. Anim. Ecol., 79 (2010), 811.  doi: 10.1111/j.1365-2656.2010.01688.x.  Google Scholar

[12]

J. García-Algarra, J. Galeano, J. M. Pastor, J. M. Iriondo and J. J. Ramasco, Rethinking the logistic approach for population dynamics of mutualistic interactions,, Journal of Theoretical Biology, 363 (2014), 332.  doi: 10.1016/j.jtbi.2014.08.039.  Google Scholar

[13]

Z. Jing, T. Lin, Y. Hong, L. Jian-Hua, C. Zhi-Wei and L. Yi-Xue, The effects of degree correlations on network topologies and robustness,, Chinese Physics, 16 (2007), 3571.   Google Scholar

[14]

C. N. Kaiser-Bunbury, S. Muff, J. Memmott, C. B. Müller and A. Caflisch, The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour,, Ecology Letters, 13 (2010), 442.   Google Scholar

[15]

J. J. Lever, E. H. van Nes, M. Scheffer and J. Bascompte, The sudden collapse of pollinator communities,, Ecology Letters 17 (2014), 17 (2014), 350.  doi: 10.1111/ele.12236.  Google Scholar

[16]

I. M. D. Maclean and R. J. Wilson, Recent ecological responses to climate change support predictions of high extinction risk,, Proceedings of the Natinal Academy of Sciences of the United States of America, 108 (2011), 12337.   Google Scholar

[17]

J. Memmott, M. N. Waser and M. P. Price, Tolerance of pollination networks to species extinctions,, Proceedings of the Royal Society B, 271 (2004), 2605.  doi: 10.1098/rspb.2004.2909.  Google Scholar

[18]

J. Memmott, P. G. Craze, N. M. Waser and M. P. Price, Global warming and the disruption of plant-pollinator interactions,, Ecology Letters, 10 (2007), 710.  doi: 10.1111/j.1461-0248.2007.01061.x.  Google Scholar

[19]

J. Memmott, C. Carvell, R. F. Pywell and P. G. Craze, The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees,, Philosophical Transactions of the Royal Society. B, 365 (2010), 2071.  doi: 10.1098/rstb.2010.0015.  Google Scholar

[20]

, NCEAS interaction webs database,, Available from: , ().   Google Scholar

[21]

J. M. Pastor, S. Santamaría, M. Méndez and J. Galeano, Effects of topology on robustness in ecological bipartite networks,, Networks and Heterogeneous Media, 7 (2012), 429.  doi: 10.3934/nhm.2012.7.429.  Google Scholar

[22]

S. Santamaría, J. M. Pastor, J. Galeano and M. Méndez, Robustness of alpine pollination networks: Effects of network structure and consequences for endemic plants,, Arctic, 46 (2014), 568.  doi: 10.1657/1938-4246-46.3.568.  Google Scholar

[23]

T. Säterberg, S. Sellman and Bo. Ebenman, High frequency of functional extinctions in ecological networks,, Nature, 7459 (): 468.   Google Scholar

[24]

E. Thébault and C. Fontaine, Stability of ecological communities and the architecture of mutualistic and trophic networks,, Science, 329 (2010), 853.  doi: 10.1126/science.1188321.  Google Scholar

[25]

W. Ulrich, M. Almeida-Neto and N. J. Gotelli, A consumer's guide to nestedness analysis,, Oikos, 118 (2009), 3.  doi: 10.1111/j.1600-0706.2008.17053.x.  Google Scholar

[26]

H. B. Wilson, B. E. Kendall and H. P. Possingham, Variability in population abundance and the classification of extinction risk,, Conservatin Biology, 25 (2011), 747.   Google Scholar

[27]

D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The American Naturalist, 134 (1989), 664.   Google Scholar

[1]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[2]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[3]

Kaifa Wang, Yang Kuang. Fluctuation and extinction dynamics in host-microparasite systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1537-1548. doi: 10.3934/cpaa.2011.10.1537

[4]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[5]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[6]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[7]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[8]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[9]

Tzy-Wei Hwang, Yang Kuang. Host Extinction Dynamics in a Simple Parasite-Host Interaction Model. Mathematical Biosciences & Engineering, 2005, 2 (4) : 743-751. doi: 10.3934/mbe.2005.2.743

[10]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[11]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[12]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[13]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

[14]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[15]

José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani. K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks & Heterogeneous Media, 2008, 3 (2) : 371-393. doi: 10.3934/nhm.2008.3.371

[16]

Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497

[17]

Sergey Zelik. On the Lyapunov dimension of cascade systems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 971-985. doi: 10.3934/cpaa.2008.7.971

[18]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[19]

Winfried Just. Approximating network dynamics: Some open problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1917-1930. doi: 10.3934/dcdsb.2018188

[20]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]