Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Reviews of Modern Physics, 74 (2002), 99-143.doi: 10.1103/RevModPhys.74.99. |
[3] |
G. Jaramillo and A. Scheel, Deformation of striped patterns by inhomogeneities, Mathematical Methods in the Applied Sciences, 38 (2015), 51-65.doi: 10.1002/mma.3049. |
[4] |
A.-K. Kassam, Solving reaction-diffusion equations 10 times faster, 2003. |
[5] |
A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233.doi: 10.1137/S1064827502410633. |
[6] |
R. Kollár and A. Scheel, Coherent structures generated by inhomogeneities in oscillatory media, SIAM J. Appl. Dyn. Syst., 6 (2007), 236-262.doi: 10.1137/060666950. |
[7] |
V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov Mat. Obšč., 16 (1967), 209-292. |
[8] |
R. B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J., 48 (1981), 289-312.doi: 10.1215/S0012-7094-81-04817-1. |
[9] |
R. B. Lockhart and R. C. McOwen, On elliptic systems in $\mathbbR^n$, Acta Math., 150 (1983), 125-135.doi: 10.1007/BF02392969. |
[10] |
R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 409-447. |
[11] |
R. C. McOwen, The behavior of the laplacian on weighted Sobolev spaces, Communications on Pure and Applied Mathematics, 32 (1979), 783-795.doi: 10.1002/cpa.3160320604. |
[12] |
A. Melcher, G. Schneider and H. Uecker, A hopf-bifurcation theorem for the vorticity formulation of the Navier-Stokes equations in $\mathbbR^3$, Communications in Partial Differential Equations, 33 (2008), 772-783.doi: 10.1080/03605300802038536. |
[13] |
V. Milisic and U. Razafison, Weighted Sobolev spaces for the Laplace equation in periodic infinite strips, preprint, arXiv:1302.4253. |
[14] |
L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators in $\mathbbR^n$, J. Math. Anal. Appl., 42 (1973), 271-301.doi: 10.1016/0022-247X(73)90138-8. |
[15] |
M. Specovius-Neugebauer and W. Wendland, Exterior stokes problems and decay at infinity, Mathematical Methods in the Applied Sciences, 8 (1986), 351-367.doi: 10.1002/mma.1670080124. |
[16] |
M. Stich and A. S. Mikhailov, Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems, Physica D: Nonlinear Phenomena, 215 (2006), 38-45.doi: 10.1016/j.physd.2006.01.011. |