June  2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387

Inhomogeneities in 3 dimensional oscillatory media

1. 

University of Minnesota, School of Mathematics, 127 Vincent Hall, 206 Church St SE, Minneapolis, MN 55455, United States

Received  January 2014 Revised  December 2014 Published  April 2015

We consider localized perturbations to spatially homogeneous oscillations in dimension 3 using the complex Ginzburg-Landau equation as a prototype. In particular, we will focus on inhomogeneities that locally change the phase of the oscillations. In the usual translation invariant spaces and at $ \epsilon=0$ the linearization about these spatially homogeneous solutions result in an operator with zero eigenvalue embedded in the essential spectrum. In contrast, we show that when considered as an operator between Kondratiev spaces, the linearization is a Fredholm operator. These spaces consist of functions with algebraical localization that increases with each derivative. We use this result to construct solutions close to the equilibrium via the Implicit Function Theorem and derive asymptotics for wavenumbers in the far field.
Citation: Gabriela Jaramillo. Inhomogeneities in 3 dimensional oscillatory media. Networks & Heterogeneous Media, 2015, 10 (2) : 387-399. doi: 10.3934/nhm.2015.10.387
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003).   Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation,, Reviews of Modern Physics, 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[3]

G. Jaramillo and A. Scheel, Deformation of striped patterns by inhomogeneities,, Mathematical Methods in the Applied Sciences, 38 (2015), 51.  doi: 10.1002/mma.3049.  Google Scholar

[4]

A.-K. Kassam, Solving reaction-diffusion equations 10 times faster,, 2003., ().   Google Scholar

[5]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[6]

R. Kollár and A. Scheel, Coherent structures generated by inhomogeneities in oscillatory media,, SIAM J. Appl. Dyn. Syst., 6 (2007), 236.  doi: 10.1137/060666950.  Google Scholar

[7]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov Mat. Obšč., 16 (1967), 209.   Google Scholar

[8]

R. B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds,, Duke Math. J., 48 (1981), 289.  doi: 10.1215/S0012-7094-81-04817-1.  Google Scholar

[9]

R. B. Lockhart and R. C. McOwen, On elliptic systems in $\mathbbR^n$,, Acta Math., 150 (1983), 125.  doi: 10.1007/BF02392969.  Google Scholar

[10]

R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 409.   Google Scholar

[11]

R. C. McOwen, The behavior of the laplacian on weighted Sobolev spaces,, Communications on Pure and Applied Mathematics, 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar

[12]

A. Melcher, G. Schneider and H. Uecker, A hopf-bifurcation theorem for the vorticity formulation of the Navier-Stokes equations in $\mathbbR^3$,, Communications in Partial Differential Equations, 33 (2008), 772.  doi: 10.1080/03605300802038536.  Google Scholar

[13]

V. Milisic and U. Razafison, Weighted Sobolev spaces for the Laplace equation in periodic infinite strips,, preprint, ().   Google Scholar

[14]

L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators in $\mathbbR^n$,, J. Math. Anal. Appl., 42 (1973), 271.  doi: 10.1016/0022-247X(73)90138-8.  Google Scholar

[15]

M. Specovius-Neugebauer and W. Wendland, Exterior stokes problems and decay at infinity,, Mathematical Methods in the Applied Sciences, 8 (1986), 351.  doi: 10.1002/mma.1670080124.  Google Scholar

[16]

M. Stich and A. S. Mikhailov, Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems,, Physica D: Nonlinear Phenomena, 215 (2006), 38.  doi: 10.1016/j.physd.2006.01.011.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003).   Google Scholar

[2]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation,, Reviews of Modern Physics, 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[3]

G. Jaramillo and A. Scheel, Deformation of striped patterns by inhomogeneities,, Mathematical Methods in the Applied Sciences, 38 (2015), 51.  doi: 10.1002/mma.3049.  Google Scholar

[4]

A.-K. Kassam, Solving reaction-diffusion equations 10 times faster,, 2003., ().   Google Scholar

[5]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[6]

R. Kollár and A. Scheel, Coherent structures generated by inhomogeneities in oscillatory media,, SIAM J. Appl. Dyn. Syst., 6 (2007), 236.  doi: 10.1137/060666950.  Google Scholar

[7]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov Mat. Obšč., 16 (1967), 209.   Google Scholar

[8]

R. B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds,, Duke Math. J., 48 (1981), 289.  doi: 10.1215/S0012-7094-81-04817-1.  Google Scholar

[9]

R. B. Lockhart and R. C. McOwen, On elliptic systems in $\mathbbR^n$,, Acta Math., 150 (1983), 125.  doi: 10.1007/BF02392969.  Google Scholar

[10]

R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 409.   Google Scholar

[11]

R. C. McOwen, The behavior of the laplacian on weighted Sobolev spaces,, Communications on Pure and Applied Mathematics, 32 (1979), 783.  doi: 10.1002/cpa.3160320604.  Google Scholar

[12]

A. Melcher, G. Schneider and H. Uecker, A hopf-bifurcation theorem for the vorticity formulation of the Navier-Stokes equations in $\mathbbR^3$,, Communications in Partial Differential Equations, 33 (2008), 772.  doi: 10.1080/03605300802038536.  Google Scholar

[13]

V. Milisic and U. Razafison, Weighted Sobolev spaces for the Laplace equation in periodic infinite strips,, preprint, ().   Google Scholar

[14]

L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators in $\mathbbR^n$,, J. Math. Anal. Appl., 42 (1973), 271.  doi: 10.1016/0022-247X(73)90138-8.  Google Scholar

[15]

M. Specovius-Neugebauer and W. Wendland, Exterior stokes problems and decay at infinity,, Mathematical Methods in the Applied Sciences, 8 (1986), 351.  doi: 10.1002/mma.1670080124.  Google Scholar

[16]

M. Stich and A. S. Mikhailov, Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems,, Physica D: Nonlinear Phenomena, 215 (2006), 38.  doi: 10.1016/j.physd.2006.01.011.  Google Scholar

[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[5]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[8]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]