Citation: |
[1] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1 (2008), 249-278.doi: 10.3934/krm.2008.1.249. |
[2] |
L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Lett., 25 (2012), 490-495.doi: 10.1016/j.aml.2011.09.043. |
[3] |
W. B. Arthur, S. N. Durlauf and D. A. Lane, Eds., The Economy as an Evolving Complex System II, Studies in the Sciences of Complexity, XXVII, Addison-Wesley, 1997. |
[4] |
K. D. Baily, Sociology and the New System Theory - Towards a Theoretical Synthesis, Suny Press, 1994. |
[5] |
P. Ball, Why Society is a Complex Matter: Meeting Twenty-first Century Challenges with a New Kind of Science, Springer-Verlag, Heidelberg, 2012.doi: 10.1007/978-3-642-29000-8. |
[6] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.doi: 10.1073/pnas.0711437105. |
[7] |
N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692.doi: 10.1142/S0218202507002431. |
[8] |
N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts: Looking for the Black Swan, Kinet. Relat. Mod., 6 (2013), 459-479.doi: 10.3934/krm.2013.6.459. |
[9] |
N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci., 22 (2012), paper No.1230004.doi: 10.1142/S0218202512300049. |
[10] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), paper No.1140006.doi: 10.1142/S0218202511400069. |
[11] |
N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity'', and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913.doi: 10.1142/S021820251350053X. |
[12] |
N. Bellomo and M. Pulvirenti, Eds., Modeling in Applied Sciences - A Kinetic Theory Approach, Birkhäuser, Boston, 2000.doi: 10.1007/978-1-4612-0513-5. |
[13] |
A. Bellouquid, E. De Angelis and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Math. Models Methods Appl. Sci., 23 (2013), 949-978.doi: 10.1142/S0218202512500650. |
[14] |
B. Berenji, T. Chou and M. D'Orsogna, Recidivism and rehabilitation of criminal offenders: A carrot and stick evolutionary games, PLOS ONE, 9 (2014), 885531.doi: 10.1371/journal.pone.0085531. |
[15] |
H. Berestycki, J. Wei and M. Winter, Existence of symmetric and asymmetric spikes of a crime hotspot model, SAM J. Math. Anal., 46 (2014), 691-719.doi: 10.1137/130922744. |
[16] |
L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kohnert and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007), 7301-7306.doi: 10.1073/pnas.0610172104. |
[17] |
J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalized peer incidence, Math. Models Methods Appl. Sci., 24 (2014), 719-750.doi: 10.1142/S0218202513500656. |
[18] |
F. Colasuonno and M. C. Salvatori, Existence and uniqueness of solutions to a Cauchy problem modeling the dynamics of socio-political conflicts, in Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems (eds. J. B. Serrin, E. L. Mitidieri and V. D. Radulescu), Series Cont. Math. AMS, Providence, USA, Contemporary Mathematics, 594 (2013), 155-165.doi: 10.1090/conm/594/11789. |
[19] |
T. Davies, H. Fry, A. Wilson and S. Bishop, A Mathematical Model of the London Riots and Their Policing, Scientific Report, 2013.doi: 10.1038/srep01303. |
[20] |
E. De Angelis, On the mathematical theory of post-Darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci., 24 (2014), 2723-2742.doi: 10.1142/S0218202514500353. |
[21] |
S. De Lillo, M. Delitala and M. C. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19 (2009), 1405-1425.doi: 10.1142/S0218202509003838. |
[22] |
M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models Methods Appl. Sci., 24 (2014), 2361-2381.doi: 10.1142/S0218202514500237. |
[23] |
M. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental,adversarial game, PLOS ONE, 8 (2013), e61458.doi: 10.1371/journal.pone.0061458. |
[24] |
M. D'Orsogna and M. Perc, Statistical physics of crime: A review, Phys. Life Rev., 12 (2014), 1-21. |
[25] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, P. R. Soc. London, 465 (2009), 3687-3708.doi: 10.1098/rspa.2009.0239. |
[26] |
P. Fajnzlber, D. Lederman and N. Loayza, Inequality and violent crime, J. Law Econ., 45 (2002), 1-39.doi: 10.1086/338347. |
[27] |
M. Felson, What every mathematician should know about modelling crime, Eur. J. Appl. Math., 21 (2010), 275-281.doi: 10.1017/S0956792510000070. |
[28] |
S. Harrendorf, M. Heiskanen and S. Malby, International Statistics on Crime and Justice, European Institute for Crime Prevention and Control, affiliated with the United Nations (HEUNI), 2010. |
[29] |
D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, 2nd edition, Springer, Berlin Heidelberg, 2010.doi: 10.1007/978-3-642-11546-2. |
[30] |
C. C. Hsieh and M. D. Pugh, Poverty, income inequality, and violent crime: A meta-analysis of recent aggregate data studies, Crim. Just. Rev., 18 (1993), 182-202.doi: 10.1177/073401689301800203. |
[31] |
E. Jager and L. Segel, On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52 (1992), 1442-1468.doi: 10.1137/0152083. |
[32] |
A. P. Kirman and N. J. Vriend, Learning to be loyal. A study of the Marseille fish market, in Interaction and Market Structure, Lecture Notes in Economics and Mathematical Systems, 484, Springer-Verlag, Heidelberg, 2000, 33-56.doi: 10.1007/978-3-642-57005-6_3. |
[33] |
D. Knopoff, On the modeling of migration phenomena on small networks, Math. Models Methods Appl. Sci., 23 (2013), 541-563.doi: 10.1142/S0218202512500558. |
[34] |
D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426.doi: 10.1142/S0218202513400137. |
[35] |
R. M. May, Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793.doi: 10.1126/science.1094442. |
[36] |
S. McCalla, M. Short and P. J. Brantingham, The effects of sacred value networks within and evolutionary, adversarial game, J. Stat. Phys., 151 (2013), 673-688.doi: 10.1007/s10955-012-0678-4. |
[37] |
G. Mohler and M. Short, Geographic profiling form kinetic models of criminal behavior, SIAM J. Appl. Math., 72 (2012), 163-180.doi: 10.1137/100794080. |
[38] |
M. A. Nowak, Evolutionary Dynamics. Exploring the Equations of Life, Harvard University Press, 2006. |
[39] |
J. C. Nuño, M. A. Herrero and M. Primicerio, A mathematical model of a criminal-prone society, Discr. Cont. Dyn. Syst. S, 4 (2011), 193-207.doi: 10.3934/dcdss.2011.4.193. |
[40] |
H. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.doi: 10.1007/BF00277392. |
[41] |
P. Ormerod, Crime: Economic incentives and social networks, IEA Hobart Paper, 151 (2005), 1-54.doi: 10.2139/ssrn.879716. |
[42] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, USA, 2013. |
[43] |
P. Pucci and M. C. Salvatori, On an initial value problem modeling evolution and selection in living systems, Disc. Cont. Dyn. Syst. S, 7 (2014), 807-821.doi: 10.3934/dcdss.2014.7.807. |
[44] |
M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society, Phys. Rev. E, 82 (2010), 066114, 7pp.doi: 10.1103/PhysRevE.82.066114. |
[45] |
M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249-1267.doi: 10.1142/S0218202508003029. |
[46] |
H. A. Simon, Models of Bounded Rationality: Empirically Grounded Economic Reason, Volume 3, MIT Press, Cambridge, MA, 1997. |
[47] |
P. E. Tetlock, Thinking the unthinkable: Sacred values and taboo cognitions, Trends Cogn. Sci., 7 (2003), 320-324.doi: 10.1016/S1364-6613(03)00135-9. |