-
Previous Article
A kinetic model for an agent based market simulation
- NHM Home
- This Issue
-
Next Article
Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: A simple unifying model
Integrating release and dispatch policies in production models
1. | Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804 |
2. | Department of Mathematics, IGPM, RWTH Aachen, Aachen, Germany |
3. | Institute of Systems Engineering, School of Economics and Management, Southeast University, Nanjing, 210096, China, China |
References:
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Applied Mathematics, 66 (2006), 896.
doi: 10.1137/040604625. |
[2] |
D. Armbruster, M. Herty and C. Ringhofer, A continuum description for a des control problem,, in 2012 IEEE 51st Annual Conference on Decision and Control (CDC), (2012), 7372.
doi: 10.1109/CDC.2012.6425934. |
[3] |
D. Armbruster, D. Marthaler, C. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.
doi: 10.1287/opre.1060.0321. |
[4] |
D. Armbruster and R. Uzsoy, Continuous dynamic models, clearing functions, and discrete-event simulation in aggregate production planning,, in New Directions in Informatics, (2012).
doi: 10.1287/educ.1120.0102. |
[5] |
J. Asmundsson, R. L. Rardin, C. H. Turkseven and R. Uzsoy, Production planning with resources subject to congestion,, Naval Res. Logist., 56 (2009), 142.
doi: 10.1002/nav.20335. |
[6] |
J. Asmundsson, R. L. Rardin and R. Uzsoy, Tractable nonlinear production planning: Models for semiconductor wafer fabrication facilities,, IEEE Transactions on Semiconductor Wafer Fabrication Facilities, 19 (2006), 95.
doi: 10.1109/TSM.2005.863214. |
[7] |
J. H. Blackstone, D. T. Philips and G. L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop operations,, International Journal of Production Research, 20 (1982), 27.
doi: 10.1080/00207548208947745. |
[8] |
R. Courant, K. O. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik,, Mathematische Annalen, 100 (1928), 32.
doi: 10.1007/BF01448839. |
[9] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains,, Society for Industrial and Applied Mathematics (SIAM), (2010).
doi: 10.1137/1.9780898717600. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flows for a PDE-ODE model of supply chains,, Communications in Mathematical Sciences, 10 (2012), 1225.
doi: 10.4310/CMS.2012.v10.n4.a10. |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.
doi: 10.1137/120889721. |
[12] |
G. D. Eppen and R. Kipp Martin, Determining safety stock in the presence of stochastic lead time and demand,, Management Science, 34 (1988), 1380.
doi: 10.1287/mnsc.34.11.1380. |
[13] |
J. W. Fowler, G. L. Hogg and S. J. Mason, Workload control in the semiconductor industry,, Production Planning and Control, 13 (2002), 568.
doi: 10.1080/0953728021000026294. |
[14] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315.
doi: 10.4310/CMS.2006.v4.n2.a3. |
[15] |
S. T. Hackman and R. C. Leachman, A general framework for modeling production,, Management Science, 35 (1989), 478.
doi: 10.1287/mnsc.35.4.478. |
[16] |
K. Itoh, D. Huang and T. Enkawa, Twofold look-ahead search for multi-criterion job shop scheduling,, International Journal of Production Research, 31 (1993), 2215.
doi: 10.1080/00207549308956854. |
[17] |
N. B. Kacar, Fitting Clearing Functions to Empirical Data: Simulation, Optimization and Heuristic Algorithms,, Ph.D Thesis, (2012). Google Scholar |
[18] |
U. S. Karmarkar, Capacity loading and release planning with work-in-progress (wip) and lead-times,, Journal of Manufacturing and Operations Management, 2 (1989), 105. Google Scholar |
[19] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Control, 55 (2010), 2511.
doi: 10.1109/TAC.2010.2046925. |
[20] |
Y. H. Lee, K. Bhaskaran and M. A. Pinedo, A heuristic to minimize the total weighted tardiness with sequence dependent setups,, IEEE Transactions on Design and Manufacturing, 29 (1997), 45.
doi: 10.1080/07408179708966311. |
[21] |
R.-K. Li, Y.-T. Shyu and S. Adiga, A heuristic rescheduling algorithm for computer-based production scheduling systems,, International Journal of Production Research, 31 (1993), 1815.
doi: 10.1080/00207549308956824. |
[22] |
K. N. McKay, F. R. Safayeni and J. A. Buzacott, Job shop scheduling theory: What is relevant?,, Interfaces, 18 (1988), 84.
doi: 10.1287/inte.18.4.84. |
[23] |
H. Missbauer and R. Uzsoy, Optimization models for production planning,, in Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook (eds. K. Kempf, (2010), 437. Google Scholar |
[24] |
S. S. Panwalkar and W. Iskander, A survey of scheduling rules,, Operations Research, 25 (1977), 45.
doi: 10.1287/opre.25.1.45. |
[25] |
D. Perdaen, D. Armbruster, K. G. Kempf and E. Lefeber, Controlling a re-entrant manufacturing line via the push-pull point,, Decision Policies for Production Networks, (2012), 103.
doi: 10.1007/978-0-85729-644-3_5. |
[26] |
V. Subramaniam, G. K. Lee, G. S. Hong, Y. S. Wong and T. Ramesh, Dynamic selection of dispatching rules for job shop scheduling,, Management of Operations, 11 (2000), 73.
doi: 10.1080/095372800232504. |
[27] |
R. Uzsoy, C. Y. Lee and L. A. Martin-Vega, A review of production planning and scheduling models in the semiconductor industry part II: Shop-floor control,, IIE Transactions, 26 (1994), 44.
doi: 10.1080/07408179408966627. |
[28] |
R. Vancheeswaran and M. A. Townsend, Two-stage heuristic procedure for scheduling job shops,, Journal of Manufacturing Systems, 12 (1993), 315.
doi: 10.1016/0278-6125(93)90322-K. |
[29] |
L. M. Wein, Scheduling semiconductor wafer fabrication,, IEEE Transactions on Semiconductor Manufacturing, 1 (1988), 115.
doi: 10.1109/66.4384. |
[30] |
M. J. Zeestraten, The look ahead dispatching procedure,, International Journal of Production Research, 28 (1990), 369.
doi: 10.1080/00207549008942717. |
show all references
References:
[1] |
D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Applied Mathematics, 66 (2006), 896.
doi: 10.1137/040604625. |
[2] |
D. Armbruster, M. Herty and C. Ringhofer, A continuum description for a des control problem,, in 2012 IEEE 51st Annual Conference on Decision and Control (CDC), (2012), 7372.
doi: 10.1109/CDC.2012.6425934. |
[3] |
D. Armbruster, D. Marthaler, C. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.
doi: 10.1287/opre.1060.0321. |
[4] |
D. Armbruster and R. Uzsoy, Continuous dynamic models, clearing functions, and discrete-event simulation in aggregate production planning,, in New Directions in Informatics, (2012).
doi: 10.1287/educ.1120.0102. |
[5] |
J. Asmundsson, R. L. Rardin, C. H. Turkseven and R. Uzsoy, Production planning with resources subject to congestion,, Naval Res. Logist., 56 (2009), 142.
doi: 10.1002/nav.20335. |
[6] |
J. Asmundsson, R. L. Rardin and R. Uzsoy, Tractable nonlinear production planning: Models for semiconductor wafer fabrication facilities,, IEEE Transactions on Semiconductor Wafer Fabrication Facilities, 19 (2006), 95.
doi: 10.1109/TSM.2005.863214. |
[7] |
J. H. Blackstone, D. T. Philips and G. L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop operations,, International Journal of Production Research, 20 (1982), 27.
doi: 10.1080/00207548208947745. |
[8] |
R. Courant, K. O. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik,, Mathematische Annalen, 100 (1928), 32.
doi: 10.1007/BF01448839. |
[9] |
C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains,, Society for Industrial and Applied Mathematics (SIAM), (2010).
doi: 10.1137/1.9780898717600. |
[10] |
C. D'Apice, R. Manzo and B. Piccoli, Optimal input flows for a PDE-ODE model of supply chains,, Communications in Mathematical Sciences, 10 (2012), 1225.
doi: 10.4310/CMS.2012.v10.n4.a10. |
[11] |
C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.
doi: 10.1137/120889721. |
[12] |
G. D. Eppen and R. Kipp Martin, Determining safety stock in the presence of stochastic lead time and demand,, Management Science, 34 (1988), 1380.
doi: 10.1287/mnsc.34.11.1380. |
[13] |
J. W. Fowler, G. L. Hogg and S. J. Mason, Workload control in the semiconductor industry,, Production Planning and Control, 13 (2002), 568.
doi: 10.1080/0953728021000026294. |
[14] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315.
doi: 10.4310/CMS.2006.v4.n2.a3. |
[15] |
S. T. Hackman and R. C. Leachman, A general framework for modeling production,, Management Science, 35 (1989), 478.
doi: 10.1287/mnsc.35.4.478. |
[16] |
K. Itoh, D. Huang and T. Enkawa, Twofold look-ahead search for multi-criterion job shop scheduling,, International Journal of Production Research, 31 (1993), 2215.
doi: 10.1080/00207549308956854. |
[17] |
N. B. Kacar, Fitting Clearing Functions to Empirical Data: Simulation, Optimization and Heuristic Algorithms,, Ph.D Thesis, (2012). Google Scholar |
[18] |
U. S. Karmarkar, Capacity loading and release planning with work-in-progress (wip) and lead-times,, Journal of Manufacturing and Operations Management, 2 (1989), 105. Google Scholar |
[19] |
M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Control, 55 (2010), 2511.
doi: 10.1109/TAC.2010.2046925. |
[20] |
Y. H. Lee, K. Bhaskaran and M. A. Pinedo, A heuristic to minimize the total weighted tardiness with sequence dependent setups,, IEEE Transactions on Design and Manufacturing, 29 (1997), 45.
doi: 10.1080/07408179708966311. |
[21] |
R.-K. Li, Y.-T. Shyu and S. Adiga, A heuristic rescheduling algorithm for computer-based production scheduling systems,, International Journal of Production Research, 31 (1993), 1815.
doi: 10.1080/00207549308956824. |
[22] |
K. N. McKay, F. R. Safayeni and J. A. Buzacott, Job shop scheduling theory: What is relevant?,, Interfaces, 18 (1988), 84.
doi: 10.1287/inte.18.4.84. |
[23] |
H. Missbauer and R. Uzsoy, Optimization models for production planning,, in Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook (eds. K. Kempf, (2010), 437. Google Scholar |
[24] |
S. S. Panwalkar and W. Iskander, A survey of scheduling rules,, Operations Research, 25 (1977), 45.
doi: 10.1287/opre.25.1.45. |
[25] |
D. Perdaen, D. Armbruster, K. G. Kempf and E. Lefeber, Controlling a re-entrant manufacturing line via the push-pull point,, Decision Policies for Production Networks, (2012), 103.
doi: 10.1007/978-0-85729-644-3_5. |
[26] |
V. Subramaniam, G. K. Lee, G. S. Hong, Y. S. Wong and T. Ramesh, Dynamic selection of dispatching rules for job shop scheduling,, Management of Operations, 11 (2000), 73.
doi: 10.1080/095372800232504. |
[27] |
R. Uzsoy, C. Y. Lee and L. A. Martin-Vega, A review of production planning and scheduling models in the semiconductor industry part II: Shop-floor control,, IIE Transactions, 26 (1994), 44.
doi: 10.1080/07408179408966627. |
[28] |
R. Vancheeswaran and M. A. Townsend, Two-stage heuristic procedure for scheduling job shops,, Journal of Manufacturing Systems, 12 (1993), 315.
doi: 10.1016/0278-6125(93)90322-K. |
[29] |
L. M. Wein, Scheduling semiconductor wafer fabrication,, IEEE Transactions on Semiconductor Manufacturing, 1 (1988), 115.
doi: 10.1109/66.4384. |
[30] |
M. J. Zeestraten, The look ahead dispatching procedure,, International Journal of Production Research, 28 (1990), 369.
doi: 10.1080/00207549008942717. |
[1] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[2] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[3] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[4] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[5] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[6] |
Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 |
[7] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[8] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[9] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[10] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[11] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[12] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[13] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[14] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[15] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[16] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[17] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[18] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[19] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[20] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]