September  2015, 10(3): 527-542. doi: 10.3934/nhm.2015.10.527

A kinetic model for an agent based market simulation

1. 

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1804

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, United States

Received  December 2014 Revised  February 2015 Published  July 2015

A kinetic model for a specific agent based simulation to generate the sales curves of successive generations of high-end computer chips is developed. The resulting continuum market model consists of transport equations in two variables, representing the availability of money and the desire to buy a new chip. In lieu of typical collision terms in the kinetic equations that discontinuously change the attributes of an agent, discontinuous changes are initiated via boundary conditions between sets of partial differential equations. A scaling analysis of the transport equations determines the different time scales that constitute the market forces, characterizing different sales scenarios. It is argued that the resulting model can be adjusted to generic markets of multi-generational technology products where the innovation time scale is an important driver of the market.
Citation: Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527
References:
[1]

T. Adriaansen, D. Armbruster, K. G. Kempf and H. Li, An agent model for the high-end gamers market,, Advances in Complex Systems, 16 (2013).  doi: 10.1142/S0219525913500288.  Google Scholar

[2]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math, 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[3]

F. M. Bass, A new product growth model for consumer durables,, Mathematical Models in Marketing, 132 (1976), 351.  doi: 10.1007/978-3-642-51565-1_107.  Google Scholar

[4]

L. Boltzmann, The second law of thermodynamics,, Theoretical Physics and Philosophical Problems, 5 (1974), 13.  doi: 10.1007/978-94-010-2091-6_2.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory Of Dilute Gases,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[6]

P. Degond, J.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local Nash equilibria,, J. Nonlinear Sci., 24 (2014), 93.  doi: 10.1007/s00332-013-9185-2.  Google Scholar

[7]

P. Degond, J.-G. Liu and C. Ringhofer, Evolution of the distribution of wealth in an economic environment driven by local Nash equilibria,, J. Stat. Phys., 154 (2014), 751.  doi: 10.1007/s10955-013-0888-4.  Google Scholar

[8]

D. Helbing, A mathematical model for attitude formation by pair interactions,, Behavioral sciences, 37 (1992), 190.   Google Scholar

[9]

R. J. LeVeque, Finite Volume Methods For Hyperbolic Problems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511791253.  Google Scholar

[10]

H. Li, D. Armbruster and K. G. Kempf, A population-growth model for multiple generations of technology products,, Manufacturing & Service Operations Management, 15 (2013), 343.  doi: 10.1287/msom.2013.0430.  Google Scholar

[11]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations And Monte Carlo Methods,, Oxford University Press, (2014).   Google Scholar

[12]

G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

[13]

A. Tversky and D. Kahneman, Loss aversion in riskless choice: A reference-dependent model,, The Quarterly Journal of Economics, 106 (1991), 1039.  doi: 10.2307/2937956.  Google Scholar

show all references

References:
[1]

T. Adriaansen, D. Armbruster, K. G. Kempf and H. Li, An agent model for the high-end gamers market,, Advances in Complex Systems, 16 (2013).  doi: 10.1142/S0219525913500288.  Google Scholar

[2]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math, 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[3]

F. M. Bass, A new product growth model for consumer durables,, Mathematical Models in Marketing, 132 (1976), 351.  doi: 10.1007/978-3-642-51565-1_107.  Google Scholar

[4]

L. Boltzmann, The second law of thermodynamics,, Theoretical Physics and Philosophical Problems, 5 (1974), 13.  doi: 10.1007/978-94-010-2091-6_2.  Google Scholar

[5]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory Of Dilute Gases,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[6]

P. Degond, J.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local Nash equilibria,, J. Nonlinear Sci., 24 (2014), 93.  doi: 10.1007/s00332-013-9185-2.  Google Scholar

[7]

P. Degond, J.-G. Liu and C. Ringhofer, Evolution of the distribution of wealth in an economic environment driven by local Nash equilibria,, J. Stat. Phys., 154 (2014), 751.  doi: 10.1007/s10955-013-0888-4.  Google Scholar

[8]

D. Helbing, A mathematical model for attitude formation by pair interactions,, Behavioral sciences, 37 (1992), 190.   Google Scholar

[9]

R. J. LeVeque, Finite Volume Methods For Hyperbolic Problems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511791253.  Google Scholar

[10]

H. Li, D. Armbruster and K. G. Kempf, A population-growth model for multiple generations of technology products,, Manufacturing & Service Operations Management, 15 (2013), 343.  doi: 10.1287/msom.2013.0430.  Google Scholar

[11]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations And Monte Carlo Methods,, Oxford University Press, (2014).   Google Scholar

[12]

G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods,, J. Stat. Phys., 151 (2013), 549.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

[13]

A. Tversky and D. Kahneman, Loss aversion in riskless choice: A reference-dependent model,, The Quarterly Journal of Economics, 106 (1991), 1039.  doi: 10.2307/2937956.  Google Scholar

[1]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[10]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[14]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[17]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[18]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (3)

[Back to Top]