-
Previous Article
Keep right or left? Towards a cognitive-mathematical model for pedestrians
- NHM Home
- This Issue
-
Next Article
A kinetic model for an agent based market simulation
Boltzmann-type models for price formation in the presence of behavioral aspects
1. | Department of Physics, Via Bassi, 6, 27100 Pavia, Italy |
2. | University of Pavia, Department of Mathematics, Via Ferrata 1, 27100 Pavia, Italy |
References:
[1] |
R. Bapna, W. Jank and G. Shmueli, Price formation and its dynamics in online auctions,, Decision Support Systems, 44 (2008), 641. Google Scholar |
[2] |
A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys. C, 13 (2002), 1315.
doi: 10.1142/S0129183102003905. |
[3] |
A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity,, Eur. Phys. J. B, 17 (2000), 167. Google Scholar |
[4] |
A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity,, Physica A, 335 (2004), 155.
doi: 10.1016/j.physa.2003.11.014. |
[5] |
A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Eds., Econophysics of Wealth Distributions,, New Economic Window Series, (2005). Google Scholar |
[6] |
A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution,, Phys. Rev. E, 72 (2005).
doi: 10.1103/PhysRevE.72.026126. |
[7] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.
doi: 10.1007/s10955-005-5456-0. |
[8] |
M. Cristelli, L. Pietronero and A. Zaccaria, Critical overview of agent-based models for economics,, in Proceedings of the School of Physics E. Fermi, (2010). Google Scholar |
[9] |
A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jour. B, 17 (2000), 723. Google Scholar |
[10] |
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008).
doi: 10.1103/PhysRevE.78.056103. |
[11] |
B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves,, Riv. Mat. Univ. Parma, 1 (2009), 199.
|
[12] |
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk,, Econometrica, 47 (1979), 183.
doi: 10.1017/CBO9780511609220.014. |
[13] |
D. Kahneman and A. Tversky, Choices, values, and frames,, American Psychologist, 39 (1984), 341.
doi: 10.1037/0003-066X.39.4.341. |
[14] |
M. Levy, H. Levy and S. Solomon, Microscopic Simulation of Financial Markets: From Investor Behaviour to Market Phoenomena,, Academic Press, (2000). Google Scholar |
[15] |
T. Lux, The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat tails of return distributions,, Journal of Economic Behavior & Organization, 33 (1998), 143.
doi: 10.1016/S0167-2681(97)00088-7. |
[16] |
T. Lux and M. Marchesi, Volatility clustering in financial markets: A microscopic simulation of interacting agents,, International Journal of Theoretical and Applied Finance, 3 (2000), 675.
doi: 10.1142/S0219024900000826. |
[17] |
T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market,, Nature, 397 (1999), 498. Google Scholar |
[18] |
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.
doi: 10.1016/j.physa.2011.08.013. |
[19] |
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics Correlations and Complexity in Finance,, Cambridge University Press, (2007).
|
[20] |
D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Stat. Phys., 130 (2008), 1087.
doi: 10.1007/s10955-007-9462-2. |
[21] |
G. Naldi, L. Pareschi and G. Toscani, Eds., Mathematical Modelling of Collective Behavior in Socio-economic and Life Sciences,, Birkhäuser, (2010).
doi: 10.1007/978-0-8176-4946-3. |
[22] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods,, Oxford University Press, (2014). Google Scholar |
[23] |
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge. A Boltzmann approach,, Phil. Trans. R. Soc. A, 372 (2014).
doi: 10.1098/rsta.2013.0396. |
[24] |
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.046102. |
[25] |
G. Toscani, Kinetic models of opinion formation,, Comm. Math. Scie., 4 (2006), 481.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[26] |
J. Voit, The Statistical Mechanics of Financial Markets,, Springer Verlag, (2005).
|
show all references
References:
[1] |
R. Bapna, W. Jank and G. Shmueli, Price formation and its dynamics in online auctions,, Decision Support Systems, 44 (2008), 641. Google Scholar |
[2] |
A. Chakraborti, Distributions of money in models of market economy,, Int. J. Modern Phys. C, 13 (2002), 1315.
doi: 10.1142/S0129183102003905. |
[3] |
A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity,, Eur. Phys. J. B, 17 (2000), 167. Google Scholar |
[4] |
A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity,, Physica A, 335 (2004), 155.
doi: 10.1016/j.physa.2003.11.014. |
[5] |
A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Eds., Econophysics of Wealth Distributions,, New Economic Window Series, (2005). Google Scholar |
[6] |
A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution,, Phys. Rev. E, 72 (2005).
doi: 10.1103/PhysRevE.72.026126. |
[7] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy,, J. Stat. Phys., 120 (2005), 253.
doi: 10.1007/s10955-005-5456-0. |
[8] |
M. Cristelli, L. Pietronero and A. Zaccaria, Critical overview of agent-based models for economics,, in Proceedings of the School of Physics E. Fermi, (2010). Google Scholar |
[9] |
A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money,, Eur. Phys. Jour. B, 17 (2000), 723. Google Scholar |
[10] |
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches,, Phys. Rev. E, 78 (2008).
doi: 10.1103/PhysRevE.78.056103. |
[11] |
B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves,, Riv. Mat. Univ. Parma, 1 (2009), 199.
|
[12] |
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk,, Econometrica, 47 (1979), 183.
doi: 10.1017/CBO9780511609220.014. |
[13] |
D. Kahneman and A. Tversky, Choices, values, and frames,, American Psychologist, 39 (1984), 341.
doi: 10.1037/0003-066X.39.4.341. |
[14] |
M. Levy, H. Levy and S. Solomon, Microscopic Simulation of Financial Markets: From Investor Behaviour to Market Phoenomena,, Academic Press, (2000). Google Scholar |
[15] |
T. Lux, The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat tails of return distributions,, Journal of Economic Behavior & Organization, 33 (1998), 143.
doi: 10.1016/S0167-2681(97)00088-7. |
[16] |
T. Lux and M. Marchesi, Volatility clustering in financial markets: A microscopic simulation of interacting agents,, International Journal of Theoretical and Applied Finance, 3 (2000), 675.
doi: 10.1142/S0219024900000826. |
[17] |
T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market,, Nature, 397 (1999), 498. Google Scholar |
[18] |
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets,, Physica A, 391 (2012), 715.
doi: 10.1016/j.physa.2011.08.013. |
[19] |
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics Correlations and Complexity in Finance,, Cambridge University Press, (2007).
|
[20] |
D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies,, J. Stat. Phys., 130 (2008), 1087.
doi: 10.1007/s10955-007-9462-2. |
[21] |
G. Naldi, L. Pareschi and G. Toscani, Eds., Mathematical Modelling of Collective Behavior in Socio-economic and Life Sciences,, Birkhäuser, (2010).
doi: 10.1007/978-0-8176-4946-3. |
[22] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods,, Oxford University Press, (2014). Google Scholar |
[23] |
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge. A Boltzmann approach,, Phil. Trans. R. Soc. A, 372 (2014).
doi: 10.1098/rsta.2013.0396. |
[24] |
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy,, Phys. Rev. E, 69 (2004).
doi: 10.1103/PhysRevE.69.046102. |
[25] |
G. Toscani, Kinetic models of opinion formation,, Comm. Math. Scie., 4 (2006), 481.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[26] |
J. Voit, The Statistical Mechanics of Financial Markets,, Springer Verlag, (2005).
|
[1] |
Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012 |
[2] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[3] |
Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489 |
[4] |
Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022 |
[5] |
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020 |
[6] |
Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623 |
[7] |
Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028 |
[8] |
Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047 |
[9] |
Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241 |
[10] |
Sergei Yu. Pilyugin, M. C. Campi. Opinion formation in voting processes under bounded confidence. Networks & Heterogeneous Media, 2019, 14 (3) : 617-632. doi: 10.3934/nhm.2019024 |
[11] |
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 |
[12] |
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 |
[13] |
N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59 |
[14] |
Pierre Carcaud, Pierre-Henri Chavanis, Mohammed Lemou, Florian Méhats. Evaporation law in kinetic gravitational systems described by simplified Landau models. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 907-934. doi: 10.3934/dcdsb.2010.14.907 |
[15] |
Martin Parisot, Mirosław Lachowicz. A kinetic model for the formation of swarms with nonlinear interactions. Kinetic & Related Models, 2016, 9 (1) : 131-164. doi: 10.3934/krm.2016.9.131 |
[16] |
Domenica Borra, Tommaso Lorenzi. Asymptotic analysis of continuous opinion dynamics models under bounded confidence. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1487-1499. doi: 10.3934/cpaa.2013.12.1487 |
[17] |
Pierre Degond, Hailiang Liu. Kinetic models for polymers with inertial effects. Networks & Heterogeneous Media, 2009, 4 (4) : 625-647. doi: 10.3934/nhm.2009.4.625 |
[18] |
Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77 |
[19] |
Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229 |
[20] |
Abderrahman Iggidr, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Multi-compartment models. Conference Publications, 2007, 2007 (Special) : 506-519. doi: 10.3934/proc.2007.2007.506 |
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]