September  2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647

Sparse control of alignment models in high dimension

1. 

Technische Universität München, Fakultät Mathematik, Boltzmannstraße 3, D-85748 Garching

2. 

Technische Universität München, Fakultät Mathematik, Boltzmannstrasse 3, D-85748 Garching, Germany, Germany

Received  August 2014 Revised  December 2014 Published  July 2015

For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a high-dimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.
Citation: Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf. Sparse control of alignment models in high dimension. Networks & Heterogeneous Media, 2015, 10 (3) : 647-697. doi: 10.3934/nhm.2015.10.647
References:
[1]

S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility,, Math. Models Methods Appl. Sci., 23 (2013), 1603.  doi: 10.1142/S0218202513500176.  Google Scholar

[2]

R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds,, Found. Comput. Math., 9 (2009), 51.  doi: 10.1007/s10208-007-9011-z.  Google Scholar

[3]

M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces,, Netw. Heterog. Media, 9 (2014), 1.  doi: 10.3934/nhm.2014.9.1.  Google Scholar

[4]

M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls,, Discrete Contin. Dynam. Systems, 35 (2015), 4071.  doi: 10.3934/dcds.2015.35.4071.  Google Scholar

[5]

J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 4320.  doi: 10.1109/CDC.2012.6425873.  Google Scholar

[6]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model,, Math. Control Relat. Fields, 3 (2013), 447.  doi: 10.3934/mcrf.2013.3.447.  Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models,, Math. Models Methods Appl. Sci., 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[8]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394.  doi: 10.1109/9.633828.  Google Scholar

[9]

R. R. Coifman and M. J. Hirn, Diffusion maps for changing data,, Appl. Comput. Harmon. Anal., 36 (2014), 79.  doi: 10.1016/j.acha.2013.03.001.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[12]

S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss,, Random Structures Algorithms, 22 (2003), 60.  doi: 10.1002/rsa.10073.  Google Scholar

[13]

S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory,, , (2014).   Google Scholar

[14]

M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension,, Multiscale Model. Simul., 9 (2011), 1727.  doi: 10.1137/110830617.  Google Scholar

[15]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014).  doi: 10.1098/rsta.2013.0400.  Google Scholar

[16]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM Control Optim. Calc. Var., 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[17]

S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[18]

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,, in Conference in modern analysis and probability, (1982), 189.  doi: 10.1090/conm/026/737400.  Google Scholar

show all references

References:
[1]

S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility,, Math. Models Methods Appl. Sci., 23 (2013), 1603.  doi: 10.1142/S0218202513500176.  Google Scholar

[2]

R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds,, Found. Comput. Math., 9 (2009), 51.  doi: 10.1007/s10208-007-9011-z.  Google Scholar

[3]

M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces,, Netw. Heterog. Media, 9 (2014), 1.  doi: 10.3934/nhm.2014.9.1.  Google Scholar

[4]

M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls,, Discrete Contin. Dynam. Systems, 35 (2015), 4071.  doi: 10.3934/dcds.2015.35.4071.  Google Scholar

[5]

J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 4320.  doi: 10.1109/CDC.2012.6425873.  Google Scholar

[6]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model,, Math. Control Relat. Fields, 3 (2013), 447.  doi: 10.3934/mcrf.2013.3.447.  Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models,, Math. Models Methods Appl. Sci., 25 (2015), 521.  doi: 10.1142/S0218202515400059.  Google Scholar

[8]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394.  doi: 10.1109/9.633828.  Google Scholar

[9]

R. R. Coifman and M. J. Hirn, Diffusion maps for changing data,, Appl. Comput. Harmon. Anal., 36 (2014), 79.  doi: 10.1016/j.acha.2013.03.001.  Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[12]

S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss,, Random Structures Algorithms, 22 (2003), 60.  doi: 10.1002/rsa.10073.  Google Scholar

[13]

S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory,, , (2014).   Google Scholar

[14]

M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension,, Multiscale Model. Simul., 9 (2011), 1727.  doi: 10.1137/110830617.  Google Scholar

[15]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014).  doi: 10.1098/rsta.2013.0400.  Google Scholar

[16]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM Control Optim. Calc. Var., 20 (2014), 1123.  doi: 10.1051/cocv/2014009.  Google Scholar

[17]

S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679.  doi: 10.1109/TAC.2010.2046113.  Google Scholar

[18]

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,, in Conference in modern analysis and probability, (1982), 189.  doi: 10.1090/conm/026/737400.  Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

[Back to Top]