December  2015, 10(4): 717-748. doi: 10.3934/nhm.2015.10.717

Optima and equilibria for traffic flow on networks with backward propagating queues

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, Penn State University, University Park, PA 16802

Received  January 2015 Revised  April 2015 Published  October 2015

This paper studies an optimal decision problem for several groups of drivers on a network of roads. Drivers have different origins and destinations, and different costs, related to their departure and arrival time. On each road the flow is governed by a conservation law, while intersections are modeled using buffers of limited capacity, so that queues can spill backward along roads leading to a crowded intersection. Two main results are proved: (i) the existence of a globally optimal solution, minimizing the sum of the costs to all drivers, and (ii) the existence of a Nash equilibrium solution, where no driver can lower his own cost by changing his departure time or the route taken to reach destination.
Citation: Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717
References:
[1]

N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843. doi: 10.1142/S0218202502002343.

[2]

A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145.

[3]

A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986. doi: 10.1051/cocv/2011198.

[4]

A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627.

[5]

A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515. doi: 10.1090/S0033-569X-2012-01304-9.

[6]

A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255.

[7]

A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149.

[8]

A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617. doi: 10.1142/S021820250700239X.

[9]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630. doi: 10.3934/dcdsb.2005.5.599.

[10]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683.

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772. doi: 10.1017/S0308210500002663.

[12]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437. doi: 10.1007/s10883-010-9099-3.

[13]

L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[14]

T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010. doi: 10.1007/978-0-387-72778-3.

[15]

T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013.

[16]

T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126. doi: 10.1016/j.trb.2012.10.001.

[17]

T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207. doi: 10.1016/j.trb.2010.05.003.

[18]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915.

[19]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006.

[20]

M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001.

[21]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6.

[22]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z.

[23]

K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30. doi: 10.1016/j.trb.2013.01.009.

[24]

M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169. doi: 10.1002/mma.779.

[25]

M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813.

[26]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294. doi: 10.3934/nhm.2006.1.275.

[27]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898719451.

[28]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[29]

P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

show all references

References:
[1]

N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843. doi: 10.1142/S0218202502002343.

[2]

A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145.

[3]

A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986. doi: 10.1051/cocv/2011198.

[4]

A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627.

[5]

A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515. doi: 10.1090/S0033-569X-2012-01304-9.

[6]

A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255.

[7]

A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149.

[8]

A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617. doi: 10.1142/S021820250700239X.

[9]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630. doi: 10.3934/dcdsb.2005.5.599.

[10]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683.

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772. doi: 10.1017/S0308210500002663.

[12]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437. doi: 10.1007/s10883-010-9099-3.

[13]

L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[14]

T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010. doi: 10.1007/978-0-387-72778-3.

[15]

T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013.

[16]

T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126. doi: 10.1016/j.trb.2012.10.001.

[17]

T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207. doi: 10.1016/j.trb.2010.05.003.

[18]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915.

[19]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006.

[20]

M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001.

[21]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6.

[22]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z.

[23]

K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30. doi: 10.1016/j.trb.2013.01.009.

[24]

M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169. doi: 10.1002/mma.779.

[25]

M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813.

[26]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294. doi: 10.3934/nhm.2006.1.275.

[27]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000. doi: 10.1137/1.9780898719451.

[28]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[29]

P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[1]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[2]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[3]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[4]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[5]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[6]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[7]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[8]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control and Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[9]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[10]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[11]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[12]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[13]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[14]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[15]

Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025

[16]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[17]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[18]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[19]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[20]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]