December  2015, 10(4): 717-748. doi: 10.3934/nhm.2015.10.717

Optima and equilibria for traffic flow on networks with backward propagating queues

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, Penn State University, University Park, PA 16802

Received  January 2015 Revised  April 2015 Published  October 2015

This paper studies an optimal decision problem for several groups of drivers on a network of roads. Drivers have different origins and destinations, and different costs, related to their departure and arrival time. On each road the flow is governed by a conservation law, while intersections are modeled using buffers of limited capacity, so that queues can spill backward along roads leading to a crowded intersection. Two main results are proved: (i) the existence of a globally optimal solution, minimizing the sum of the costs to all drivers, and (ii) the existence of a Nash equilibrium solution, where no driver can lower his own cost by changing his departure time or the route taken to reach destination.
Citation: Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks & Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717
References:
[1]

N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling,, Math. Models Methods Appl. Sci., 12 (2002), 1801. doi: 10.1142/S0218202502002343. Google Scholar

[2]

A. Bressan and K. Han, Optima and equilibria for a model of traffic flow,, SIAM J. Math. Anal., 43 (2011), 2384. doi: 10.1137/110825145. Google Scholar

[3]

A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers,, ESAIM; Control, 18 (2012), 969. doi: 10.1051/cocv/2011198. Google Scholar

[4]

A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks,, Networks & Heter. Media, 8 (2013), 627. doi: 10.3934/nhm.2013.8.627. Google Scholar

[5]

A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow,, Quarterly Appl. Math., 70 (2012), 495. doi: 10.1090/S0033-569X-2012-01304-9. Google Scholar

[6]

A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads,, Networks & Heter. Media, 10 (2015), 255. doi: 10.3934/nhm.2015.10.255. Google Scholar

[7]

A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction,, Discr. Cont. Dyn. Syst., 35 (2015), 4149. doi: 10.3934/dcds.2015.35.4149. Google Scholar

[8]

A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks,, Math. Models Methods Appl. Sci., 17 (2007), 1587. doi: 10.1142/S021820250700239X. Google Scholar

[9]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete Contin. Dyn. Syst. B, 5 (2005), 599. doi: 10.3934/dcdsb.2005.5.599. Google Scholar

[10]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow,, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759. doi: 10.1017/S0308210500002663. Google Scholar

[12]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks,, J. Dyn. Control Syst., 16 (2010), 407. doi: 10.1007/s10883-010-9099-3. Google Scholar

[13]

L. C. Evans, Partial Differential Equations. Second edition,, American Mathematical Society, (2010). doi: 10.1090/gsm/019. Google Scholar

[14]

T. Friesz, Dynamic Optimization and Differential Games,, Springer, (2010). doi: 10.1007/978-0-387-72778-3. Google Scholar

[15]

T. Friesz and K. Han, Dynamic Network User Equilibrium,, Springer, (2013). Google Scholar

[16]

T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model,, Transp. Res., B 47 (2013), 102. doi: 10.1016/j.trb.2012.10.001. Google Scholar

[17]

T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium,, Transp. Res., B 45 (2011), 176. doi: 10.1016/j.trb.2010.05.003. Google Scholar

[18]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. 32 (2012), 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[19]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[20]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. Inst. H. Poincar\'e, 26 (2009), 1925. doi: 10.1016/j.anihpc.2009.04.001. Google Scholar

[21]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[22]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, J. Optim. Theory Appl., 126 (2005), 589. doi: 10.1007/s10957-005-5499-z. Google Scholar

[23]

K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium,, Transp. Res., B 53 (2013), 17. doi: 10.1016/j.trb.2013.01.009. Google Scholar

[24]

M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow,, Math. Methods Appl. Sci., 30 (2007), 153. doi: 10.1002/mma.779. Google Scholar

[25]

M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[26]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heter. Media, 1 (2006), 275. doi: 10.3934/nhm.2006.1.275. Google Scholar

[27]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Reprint of the 1980 original. SIAM, (1980). doi: 10.1137/1.9780898719451. Google Scholar

[28]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society of London: Series A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

show all references

References:
[1]

N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling,, Math. Models Methods Appl. Sci., 12 (2002), 1801. doi: 10.1142/S0218202502002343. Google Scholar

[2]

A. Bressan and K. Han, Optima and equilibria for a model of traffic flow,, SIAM J. Math. Anal., 43 (2011), 2384. doi: 10.1137/110825145. Google Scholar

[3]

A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers,, ESAIM; Control, 18 (2012), 969. doi: 10.1051/cocv/2011198. Google Scholar

[4]

A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks,, Networks & Heter. Media, 8 (2013), 627. doi: 10.3934/nhm.2013.8.627. Google Scholar

[5]

A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow,, Quarterly Appl. Math., 70 (2012), 495. doi: 10.1090/S0033-569X-2012-01304-9. Google Scholar

[6]

A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads,, Networks & Heter. Media, 10 (2015), 255. doi: 10.3934/nhm.2015.10.255. Google Scholar

[7]

A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction,, Discr. Cont. Dyn. Syst., 35 (2015), 4149. doi: 10.3934/dcds.2015.35.4149. Google Scholar

[8]

A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks,, Math. Models Methods Appl. Sci., 17 (2007), 1587. doi: 10.1142/S021820250700239X. Google Scholar

[9]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete Contin. Dyn. Syst. B, 5 (2005), 599. doi: 10.3934/dcdsb.2005.5.599. Google Scholar

[10]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow,, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759. doi: 10.1017/S0308210500002663. Google Scholar

[12]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks,, J. Dyn. Control Syst., 16 (2010), 407. doi: 10.1007/s10883-010-9099-3. Google Scholar

[13]

L. C. Evans, Partial Differential Equations. Second edition,, American Mathematical Society, (2010). doi: 10.1090/gsm/019. Google Scholar

[14]

T. Friesz, Dynamic Optimization and Differential Games,, Springer, (2010). doi: 10.1007/978-0-387-72778-3. Google Scholar

[15]

T. Friesz and K. Han, Dynamic Network User Equilibrium,, Springer, (2013). Google Scholar

[16]

T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model,, Transp. Res., B 47 (2013), 102. doi: 10.1016/j.trb.2012.10.001. Google Scholar

[17]

T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium,, Transp. Res., B 45 (2011), 176. doi: 10.1016/j.trb.2010.05.003. Google Scholar

[18]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. 32 (2012), 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[19]

M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[20]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. Inst. H. Poincar\'e, 26 (2009), 1925. doi: 10.1016/j.anihpc.2009.04.001. Google Scholar

[21]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[22]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, J. Optim. Theory Appl., 126 (2005), 589. doi: 10.1007/s10957-005-5499-z. Google Scholar

[23]

K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium,, Transp. Res., B 53 (2013), 17. doi: 10.1016/j.trb.2013.01.009. Google Scholar

[24]

M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow,, Math. Methods Appl. Sci., 30 (2007), 153. doi: 10.1002/mma.779. Google Scholar

[25]

M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[26]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heter. Media, 1 (2006), 275. doi: 10.3934/nhm.2006.1.275. Google Scholar

[27]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Reprint of the 1980 original. SIAM, (1980). doi: 10.1137/1.9780898719451. Google Scholar

[28]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society of London: Series A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[1]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[2]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[3]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[4]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[5]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[6]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[7]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[8]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[9]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[10]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[11]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[12]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[13]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[14]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[15]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[16]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[17]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[18]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[19]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[20]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]