-
Previous Article
Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks
- NHM Home
- This Issue
- Next Article
Optima and equilibria for traffic flow on networks with backward propagating queues
1. | Department of Mathematics, Penn State University, University Park, Pa.16802 |
2. | Department of Mathematics, Penn State University, University Park, PA 16802 |
References:
[1] |
N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843.
doi: 10.1142/S0218202502002343. |
[2] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417.
doi: 10.1137/110825145. |
[3] |
A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986.
doi: 10.1051/cocv/2011198. |
[4] |
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648.
doi: 10.3934/nhm.2013.8.627. |
[5] |
A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515.
doi: 10.1090/S0033-569X-2012-01304-9. |
[6] |
A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293.
doi: 10.3934/nhm.2015.10.255. |
[7] |
A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171.
doi: 10.3934/dcds.2015.35.4149. |
[8] |
A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617.
doi: 10.1142/S021820250700239X. |
[9] |
Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630.
doi: 10.3934/dcdsb.2005.5.599. |
[10] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[11] |
R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772.
doi: 10.1017/S0308210500002663. |
[12] |
C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437.
doi: 10.1007/s10883-010-9099-3. |
[13] |
L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[14] |
T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010.
doi: 10.1007/978-0-387-72778-3. |
[15] |
T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013. |
[16] |
T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126.
doi: 10.1016/j.trb.2012.10.001. |
[17] |
T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207.
doi: 10.1016/j.trb.2010.05.003. |
[18] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938.
doi: 10.3934/dcds.2012.32.1915. |
[19] |
M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[20] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951.
doi: 10.1016/j.anihpc.2009.04.001. |
[21] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161.
doi: 10.1007/978-1-4614-6243-9_6. |
[22] |
M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616.
doi: 10.1007/s10957-005-5499-z. |
[23] |
K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30.
doi: 10.1016/j.trb.2013.01.009. |
[24] |
M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169.
doi: 10.1002/mma.779. |
[25] |
M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826.
doi: 10.3934/nhm.2009.4.813. |
[26] |
M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294.
doi: 10.3934/nhm.2006.1.275. |
[27] |
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719451. |
[28] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[29] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
show all references
References:
[1] |
N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843.
doi: 10.1142/S0218202502002343. |
[2] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417.
doi: 10.1137/110825145. |
[3] |
A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986.
doi: 10.1051/cocv/2011198. |
[4] |
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648.
doi: 10.3934/nhm.2013.8.627. |
[5] |
A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515.
doi: 10.1090/S0033-569X-2012-01304-9. |
[6] |
A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293.
doi: 10.3934/nhm.2015.10.255. |
[7] |
A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171.
doi: 10.3934/dcds.2015.35.4149. |
[8] |
A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617.
doi: 10.1142/S021820250700239X. |
[9] |
Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630.
doi: 10.3934/dcdsb.2005.5.599. |
[10] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[11] |
R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772.
doi: 10.1017/S0308210500002663. |
[12] |
C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437.
doi: 10.1007/s10883-010-9099-3. |
[13] |
L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[14] |
T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010.
doi: 10.1007/978-0-387-72778-3. |
[15] |
T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013. |
[16] |
T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126.
doi: 10.1016/j.trb.2012.10.001. |
[17] |
T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207.
doi: 10.1016/j.trb.2010.05.003. |
[18] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938.
doi: 10.3934/dcds.2012.32.1915. |
[19] |
M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[20] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951.
doi: 10.1016/j.anihpc.2009.04.001. |
[21] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161.
doi: 10.1007/978-1-4614-6243-9_6. |
[22] |
M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616.
doi: 10.1007/s10957-005-5499-z. |
[23] |
K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30.
doi: 10.1016/j.trb.2013.01.009. |
[24] |
M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169.
doi: 10.1002/mma.779. |
[25] |
M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826.
doi: 10.3934/nhm.2009.4.813. |
[26] |
M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294.
doi: 10.3934/nhm.2006.1.275. |
[27] |
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719451. |
[28] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[29] |
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[1] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[2] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[3] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[4] |
Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627 |
[5] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[6] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[7] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[8] |
Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control and Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401 |
[9] |
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010 |
[10] |
Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969 |
[11] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[12] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
[13] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[14] |
Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617 |
[15] |
Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025 |
[16] |
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537 |
[17] |
Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525 |
[18] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[19] |
Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010 |
[20] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]