\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optima and equilibria for traffic flow on networks with backward propagating queues

Abstract Related Papers Cited by
  • This paper studies an optimal decision problem for several groups of drivers on a network of roads. Drivers have different origins and destinations, and different costs, related to their departure and arrival time. On each road the flow is governed by a conservation law, while intersections are modeled using buffers of limited capacity, so that queues can spill backward along roads leading to a crowded intersection. Two main results are proved: (i) the existence of a globally optimal solution, minimizing the sum of the costs to all drivers, and (ii) the existence of a Nash equilibrium solution, where no driver can lower his own cost by changing his departure time or the route taken to reach destination.
    Mathematics Subject Classification: Primary: 49K35, 35L65; Secondary: 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Bellomo, M. Delitala and V. Coscia, On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12 (2002), 1801-1843.doi: 10.1142/S0218202502002343.

    [2]

    A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417.doi: 10.1137/110825145.

    [3]

    A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM; Control, Optim. Calc. Var., 18 (2012), 969-986.doi: 10.1051/cocv/2011198.

    [4]

    A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Networks & Heter. Media, 8 (2013), 627-648.doi: 10.3934/nhm.2013.8.627.

    [5]

    A. Bressan, C. J. Liu, W. Shen and F. Yu, Variational analysis of Nash equilibria for a model of traffic flow, Quarterly Appl. Math., 70 (2012), 495-515.doi: 10.1090/S0033-569X-2012-01304-9.

    [6]

    A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Networks & Heter. Media, 10 (2015), 255-293.doi: 10.3934/nhm.2015.10.255.

    [7]

    A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171.doi: 10.3934/dcds.2015.35.4149.

    [8]

    A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617.doi: 10.1142/S021820250700239X.

    [9]

    Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. B, 5 (2005), 599-630.doi: 10.3934/dcdsb.2005.5.599.

    [10]

    G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.doi: 10.1137/S0036141004402683.

    [11]

    R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh, A 133 (2003), 759-772.doi: 10.1017/S0308210500002663.

    [12]

    C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for traffic flow on networks, J. Dyn. Control Syst., 16 (2010), 407-437.doi: 10.1007/s10883-010-9099-3.

    [13]

    L. C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence, RI, 2010.doi: 10.1090/gsm/019.

    [14]

    T. Friesz, Dynamic Optimization and Differential Games, Springer, New York, 2010.doi: 10.1007/978-0-387-72778-3.

    [15]

    T. Friesz and K. Han, Dynamic Network User Equilibrium, Springer, 2013.

    [16]

    T. Friesz, K. Han, P. A. Neto, A. Meimand and T. Yao, Dynamic user equilibrium based on a hydrodynamic model, Transp. Res., B 47 (2013), 102-126.doi: 10.1016/j.trb.2012.10.001.

    [17]

    T. Friesz, T. Kim, C. Kwon and M. A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium, Transp. Res., B 45 (2011), 176-207.doi: 10.1016/j.trb.2010.05.003.

    [18]

    M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. 32 (2012), 1915-1938.doi: 10.3934/dcds.2012.32.1915.

    [19]

    M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006.

    [20]

    M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincar\'e, 26 (2009), 1925-1951.doi: 10.1016/j.anihpc.2009.04.001.

    [21]

    M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, S V. Ukkusuri and K. Ozbay eds., Springer, New York, 2 (2013), 143-161.doi: 10.1007/978-1-4614-6243-9_6.

    [22]

    M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616.doi: 10.1007/s10957-005-5499-z.

    [23]

    K. Han,T. Friesz and T. Yao, Existence of simultaneous route and departure choice dynamic user equilibrium, Transp. Res., B 53 (2013), 17-30.doi: 10.1016/j.trb.2013.01.009.

    [24]

    M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow, Math. Methods Appl. Sci., 30 (2007), 153-169.doi: 10.1002/mma.779.

    [25]

    M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826.doi: 10.3934/nhm.2009.4.813.

    [26]

    M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heter. Media, 1 (2006), 275-294.doi: 10.3934/nhm.2006.1.275.

    [27]

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original. SIAM, Philadelphia, PA, 2000.doi: 10.1137/1.9780898719451.

    [28]

    M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [29]

    P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return