December  2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749

Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks

1. 

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Mathematik, Chair of Applied Mathematics 2, Cauerstraße 11, 91058 Erlangen, Germany, Germany, Germany

2. 

School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China

Received  October 2014 Revised  May 2015 Published  October 2015

We consider a system of scalar nonlocal conservation laws on networks that model a highly re-entrant multi-commodity manufacturing system as encountered in semi-conductor production. Every single commodity is modeled by a nonlocal conservation law, and the corresponding PDEs are coupled via a collective load, the work in progress. We illustrate the dynamics for two commodities. In the applications, directed acyclic networks naturally occur, therefore this type of networks is considered. On every edge of the network we have a system of coupled conservation laws with nonlocal velocity. At the junctions the right hand side boundary data of the foregoing edges is passed as left hand side boundary data to the following edges and PDEs. For distributing junctions, where we have more than one outgoing edge, we impose time dependent distribution functions that guarantee conservation of mass. We provide results of regularity, existence and well-posedness of the multi-commodity network model for $L^{p}$-, $BV$- and $W^{1,p}$-data. Moreover, we define an $L^{2}$-tracking type objective and show the existence of minimizers that solve the corresponding optimal control problem.
Citation: Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749
References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam),, 2nd edition, (2003).   Google Scholar

[2]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions Of Bounded Variation And Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[5]

D. Armbruster, D. E. Marthaler, C. A. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

A. A. Assad, Multicommodity network flows - a survey,, Networks, 8 (1978), 37.  doi: 10.1002/net.3230080107.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization,, Society for Industrial and Applied Mathematics (SIAM), (2006).  doi: 10.1137/1.9781611973488.  Google Scholar

[8]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[11]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks,, Princeton Landmarks in Mathematics, (1962).   Google Scholar

[13]

A. Freno and E. Trentin, Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models,, Intelligent Systems Reference Library, (2011).  doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Vol. 80 of Monographs in Mathematics,, Birkhäuser Boston, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity,, SIAM J. Control Optim., 52 (2014), 2141.  doi: 10.1137/120873832.  Google Scholar

[16]

M. Gugat, F. M. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks,, Networks and Heterogeneous Media, 10 (2015), 295.  doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained optimization and optimal control for partial differential equations, (2012), 123.  doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

J. L. Kennington, A survey of linear cost multicommodity network flows,, Operations Res., 26 (1978), 209.  doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Contr., 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics,, American Mathematical Society, (2009).  doi: 10.1090/gsm/105.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[23]

D. W. Stroock, Essentials of Integration Theory for Analysis, vol. 262,, Springer, (2011).  doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

J. J. Yeh, Lectures On Real Analysis,, World Scientific Publishing Co. Inc., (2000).  doi: 10.1142/9789812799531_0003.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam),, 2nd edition, (2003).   Google Scholar

[2]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions Of Bounded Variation And Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[5]

D. Armbruster, D. E. Marthaler, C. A. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

A. A. Assad, Multicommodity network flows - a survey,, Networks, 8 (1978), 37.  doi: 10.1002/net.3230080107.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization,, Society for Industrial and Applied Mathematics (SIAM), (2006).  doi: 10.1137/1.9781611973488.  Google Scholar

[8]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[11]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks,, Princeton Landmarks in Mathematics, (1962).   Google Scholar

[13]

A. Freno and E. Trentin, Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models,, Intelligent Systems Reference Library, (2011).  doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Vol. 80 of Monographs in Mathematics,, Birkhäuser Boston, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity,, SIAM J. Control Optim., 52 (2014), 2141.  doi: 10.1137/120873832.  Google Scholar

[16]

M. Gugat, F. M. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks,, Networks and Heterogeneous Media, 10 (2015), 295.  doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained optimization and optimal control for partial differential equations, (2012), 123.  doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

J. L. Kennington, A survey of linear cost multicommodity network flows,, Operations Res., 26 (1978), 209.  doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Contr., 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics,, American Mathematical Society, (2009).  doi: 10.1090/gsm/105.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[23]

D. W. Stroock, Essentials of Integration Theory for Analysis, vol. 262,, Springer, (2011).  doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

J. J. Yeh, Lectures On Real Analysis,, World Scientific Publishing Co. Inc., (2000).  doi: 10.1142/9789812799531_0003.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[13]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[19]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[20]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (14)

[Back to Top]