December  2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749

Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks

1. 

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Mathematik, Chair of Applied Mathematics 2, Cauerstraße 11, 91058 Erlangen, Germany, Germany, Germany

2. 

School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China

Received  October 2014 Revised  May 2015 Published  October 2015

We consider a system of scalar nonlocal conservation laws on networks that model a highly re-entrant multi-commodity manufacturing system as encountered in semi-conductor production. Every single commodity is modeled by a nonlocal conservation law, and the corresponding PDEs are coupled via a collective load, the work in progress. We illustrate the dynamics for two commodities. In the applications, directed acyclic networks naturally occur, therefore this type of networks is considered. On every edge of the network we have a system of coupled conservation laws with nonlocal velocity. At the junctions the right hand side boundary data of the foregoing edges is passed as left hand side boundary data to the following edges and PDEs. For distributing junctions, where we have more than one outgoing edge, we impose time dependent distribution functions that guarantee conservation of mass. We provide results of regularity, existence and well-posedness of the multi-commodity network model for $L^{p}$-, $BV$- and $W^{1,p}$-data. Moreover, we define an $L^{2}$-tracking type objective and show the existence of minimizers that solve the corresponding optimal control problem.
Citation: Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749
References:
[1]

2nd edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

SIAM Journal on Numerical Analysis, 53 (2015), 963-983. doi: 10.1137/140975255.  Google Scholar

[3]

Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[4]

SIAM J. Appl. Math., 66 (2006), 896-920. doi: 10.1137/040604625.  Google Scholar

[5]

Operations Research, 54 (2006), 933-950. doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

Networks, 8 (1978), 37-91. doi: 10.1002/net.3230080107.  Google Scholar

[7]

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. doi: 10.1137/1.9781611973488.  Google Scholar

[8]

Numerische Mathematik, Springer Berlin Heidelberg, (2015), 1-25. doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

Universitext, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007.  Google Scholar

[11]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337-1359. doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1962.  Google Scholar

[13]

Intelligent Systems Reference Library, Springer, 2011. doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

Birkhäuser Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

SIAM J. Control Optim., 52 (2014), 2141-2163. doi: 10.1137/120873832.  Google Scholar

[16]

Networks and Heterogeneous Media, 10 (2015), 295-320. doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

Journal of Optimization Theory and Applications, 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

in Constrained optimization and optimal control for partial differential equations, vol. 160 of Internat. Ser. Numer. Math., Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

Operations Res., 26 (1978), 209-236. doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

IEEE Trans. Automat. Contr., 55 (2010), 2511-2526. doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.  Google Scholar

[22]

Ann. Mat. Pura Appl. (4), 146 (1987), 65-96 doi: 10.1007/BF01762360.  Google Scholar

[23]

Springer, 2011. doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

World Scientific Publishing Co. Inc., River Edge, NJ, 2000. doi: 10.1142/9789812799531_0003.  Google Scholar

show all references

References:
[1]

2nd edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

SIAM Journal on Numerical Analysis, 53 (2015), 963-983. doi: 10.1137/140975255.  Google Scholar

[3]

Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[4]

SIAM J. Appl. Math., 66 (2006), 896-920. doi: 10.1137/040604625.  Google Scholar

[5]

Operations Research, 54 (2006), 933-950. doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

Networks, 8 (1978), 37-91. doi: 10.1002/net.3230080107.  Google Scholar

[7]

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. doi: 10.1137/1.9781611973488.  Google Scholar

[8]

Numerische Mathematik, Springer Berlin Heidelberg, (2015), 1-25. doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

Universitext, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

ESAIM Control Optim. Calc. Var., 17 (2011), 353-379. doi: 10.1051/cocv/2010007.  Google Scholar

[11]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337-1359. doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1962.  Google Scholar

[13]

Intelligent Systems Reference Library, Springer, 2011. doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

Birkhäuser Boston, 1984. doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

SIAM J. Control Optim., 52 (2014), 2141-2163. doi: 10.1137/120873832.  Google Scholar

[16]

Networks and Heterogeneous Media, 10 (2015), 295-320. doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

Journal of Optimization Theory and Applications, 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

in Constrained optimization and optimal control for partial differential equations, vol. 160 of Internat. Ser. Numer. Math., Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

Operations Res., 26 (1978), 209-236. doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

IEEE Trans. Automat. Contr., 55 (2010), 2511-2526. doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

American Mathematical Society, Providence, RI, 2009. doi: 10.1090/gsm/105.  Google Scholar

[22]

Ann. Mat. Pura Appl. (4), 146 (1987), 65-96 doi: 10.1007/BF01762360.  Google Scholar

[23]

Springer, 2011. doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

World Scientific Publishing Co. Inc., River Edge, NJ, 2000. doi: 10.1142/9789812799531_0003.  Google Scholar

[1]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[4]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[7]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[8]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[10]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[13]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[14]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[15]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[16]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[17]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[18]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[19]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (14)

[Back to Top]