December  2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749

Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks

1. 

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Mathematik, Chair of Applied Mathematics 2, Cauerstraße 11, 91058 Erlangen, Germany, Germany, Germany

2. 

School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China

Received  October 2014 Revised  May 2015 Published  October 2015

We consider a system of scalar nonlocal conservation laws on networks that model a highly re-entrant multi-commodity manufacturing system as encountered in semi-conductor production. Every single commodity is modeled by a nonlocal conservation law, and the corresponding PDEs are coupled via a collective load, the work in progress. We illustrate the dynamics for two commodities. In the applications, directed acyclic networks naturally occur, therefore this type of networks is considered. On every edge of the network we have a system of coupled conservation laws with nonlocal velocity. At the junctions the right hand side boundary data of the foregoing edges is passed as left hand side boundary data to the following edges and PDEs. For distributing junctions, where we have more than one outgoing edge, we impose time dependent distribution functions that guarantee conservation of mass. We provide results of regularity, existence and well-posedness of the multi-commodity network model for $L^{p}$-, $BV$- and $W^{1,p}$-data. Moreover, we define an $L^{2}$-tracking type objective and show the existence of minimizers that solve the corresponding optimal control problem.
Citation: Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749
References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam),, 2nd edition, (2003).   Google Scholar

[2]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions Of Bounded Variation And Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[5]

D. Armbruster, D. E. Marthaler, C. A. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

A. A. Assad, Multicommodity network flows - a survey,, Networks, 8 (1978), 37.  doi: 10.1002/net.3230080107.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization,, Society for Industrial and Applied Mathematics (SIAM), (2006).  doi: 10.1137/1.9781611973488.  Google Scholar

[8]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[11]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks,, Princeton Landmarks in Mathematics, (1962).   Google Scholar

[13]

A. Freno and E. Trentin, Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models,, Intelligent Systems Reference Library, (2011).  doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Vol. 80 of Monographs in Mathematics,, Birkhäuser Boston, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity,, SIAM J. Control Optim., 52 (2014), 2141.  doi: 10.1137/120873832.  Google Scholar

[16]

M. Gugat, F. M. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks,, Networks and Heterogeneous Media, 10 (2015), 295.  doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained optimization and optimal control for partial differential equations, (2012), 123.  doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

J. L. Kennington, A survey of linear cost multicommodity network flows,, Operations Res., 26 (1978), 209.  doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Contr., 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics,, American Mathematical Society, (2009).  doi: 10.1090/gsm/105.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[23]

D. W. Stroock, Essentials of Integration Theory for Analysis, vol. 262,, Springer, (2011).  doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

J. J. Yeh, Lectures On Real Analysis,, World Scientific Publishing Co. Inc., (2000).  doi: 10.1142/9789812799531_0003.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam),, 2nd edition, (2003).   Google Scholar

[2]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions Of Bounded Variation And Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[4]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[5]

D. Armbruster, D. E. Marthaler, C. A. Ringhofer, K. G. Kempf and T.-C. Jo, A continuum model for a re-entrant factory,, Operations Research, 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[6]

A. A. Assad, Multicommodity network flows - a survey,, Networks, 8 (1978), 37.  doi: 10.1002/net.3230080107.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, vol. 6 of MPS/SIAM Series on Optimization,, Society for Industrial and Applied Mathematics (SIAM), (2006).  doi: 10.1137/1.9781611973488.  Google Scholar

[8]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[10]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[11]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[12]

L. R. Ford Jr. and D. R. Fulkerson, Flows in Networks,, Princeton Landmarks in Mathematics, (1962).   Google Scholar

[13]

A. Freno and E. Trentin, Hybrid Random Fields: A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models,, Intelligent Systems Reference Library, (2011).  doi: 10.1007/978-3-642-20308-4.  Google Scholar

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Vol. 80 of Monographs in Mathematics,, Birkhäuser Boston, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[15]

M. Gröschel, A. Keimer, G. Leugering and Z. Wang, Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity,, SIAM J. Control Optim., 52 (2014), 2141.  doi: 10.1137/120873832.  Google Scholar

[16]

M. Gugat, F. M. Hante, M. Hirsch-Dick and G. Leugering, Stationary states in gas networks,, Networks and Heterogeneous Media, 10 (2015), 295.  doi: 10.3934/nhm.2015.10.295.  Google Scholar

[17]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[18]

M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws,, in Constrained optimization and optimal control for partial differential equations, (2012), 123.  doi: 10.1007/978-3-0348-0133-1_7.  Google Scholar

[19]

J. L. Kennington, A survey of linear cost multicommodity network flows,, Operations Res., 26 (1978), 209.  doi: 10.1287/opre.26.2.209.  Google Scholar

[20]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Contr., 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[21]

G. Leoni, A First Course in Sobolev Spaces, vol. 105 of Graduate Studies in Mathematics,, American Mathematical Society, (2009).  doi: 10.1090/gsm/105.  Google Scholar

[22]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[23]

D. W. Stroock, Essentials of Integration Theory for Analysis, vol. 262,, Springer, (2011).  doi: 10.1007/978-1-4614-1135-2.  Google Scholar

[24]

W. W.-Y. Wong, Compactness in $L^{2}$, 2013, Personal Communication.,, , ().   Google Scholar

[25]

J. J. Yeh, Lectures On Real Analysis,, World Scientific Publishing Co. Inc., (2000).  doi: 10.1142/9789812799531_0003.  Google Scholar

[1]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[2]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[3]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[4]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[5]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[6]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[7]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[8]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[9]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[10]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[11]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[12]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[15]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks & Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

[16]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[17]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[18]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[19]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[20]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

[Back to Top]