December  2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897

Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II

1. 

School of Mathematics, Hunan University, Changsha 410082, China

2. 

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, United States

Received  September 2014 Revised  August 2015 Published  October 2015

In this paper, we study the connection between the bifurcation of diffuse transition layers and that of the underlying limit interfacial problem in a degenerate spatially inhomogeneous medium. In dimension one, we prove the existence of bifurcation of diffuse interfaces in a pitchfork spatial inhomogeneity for a partial differential equation with bistable type nonlinearity. Bifurcation point is characterized quantitatively as well. The main conclusion is that the bifurcation diagram of the diffuse transition layers inherits mostly from that of the zeros of the spatial inhomogeneity. However, explicit examples are given for which the bifurcation of these two are different in terms of (im)perfection. This is a continuation of [8] which makes use of bilinear nonlinearity allowing the use of explicit solution formula. In the current work, we extend the results to a general smooth nonlinear function. We perform detail analysis of the principal eigenvalue and eigenfunction of some singularly perturbed eigenvalue problems and their interaction with the background inhomogeneity. This is the first result that takes into account simultaneously the interaction between singular perturbation, spatial inhomogeneity and bifurcation.
Citation: Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897
References:
[1]

N. Alikakos, G. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations,, Journal of Differential Equations, 126 (1996), 106.  doi: 10.1006/jdeq.1996.0046.  Google Scholar

[2]

S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem,, Journal of Differential Equations, 67 (1987), 212.  doi: 10.1016/0022-0396(87)90147-1.  Google Scholar

[3]

S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I,, Arch. Rational Mech. Anal., 59 (1975), 159.   Google Scholar

[4]

S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II,, Arch. Rational Mech. Anal., 62 (1976), 209.   Google Scholar

[5]

P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter,, Russian Math. Surveys, 29 (1974), 103.  doi: 10.1070/RM1974v029n04ABEH001291.  Google Scholar

[6]

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I,, Applied Mathematical Sciences 51, (1985).  doi: 10.1007/978-1-4612-5034-0.  Google Scholar

[7]

J. K. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan Journal Applied Math., 5 (1988), 367.  doi: 10.1007/BF03167908.  Google Scholar

[8]

C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in inhomogeneous media, part I,, Networks and Heterogeneous Media, 8 (2013), 1009.  doi: 10.3934/nhm.2013.8.1009.  Google Scholar

[9]

T. Iibun and K. Sakamoto, Internal layer intersecting the boundary of domains in the allen-cahn equation,, Japan J. Indust. Appl. Math., 18 (2001), 697.  doi: 10.1007/BF03167411.  Google Scholar

[10]

H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems,, Hiroshima Math. J., 19 (1989), 587.   Google Scholar

[11]

H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems,, Nonlinear Analysis, 13 (1989), 507.  doi: 10.1016/0362-546X(89)90061-8.  Google Scholar

[12]

M. Ito, A remark on singular perturbation methods,, Hiroshima Math. J., 14 (1985), 619.   Google Scholar

[13]

H. Kokubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcations in bistable reaction-diffusion systems,, Journal of Differential Equations, 86 (1990), 260.  doi: 10.1016/0022-0396(90)90033-L.  Google Scholar

[14]

B. Matkowsky and E. Reiss, Singular perturbations of bifurcations,, SIAM J. Appl. Math., 33 (1977), 230.  doi: 10.1137/0133014.  Google Scholar

[15]

K. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165.  doi: 10.1023/A:1004518904533.  Google Scholar

[16]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, SIAM J. Math. Anal., 13 (1982), 555.  doi: 10.1137/0513037.  Google Scholar

[17]

Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems,, Rocky Mountain J. Math., 21 (1991), 727.  doi: 10.1216/rmjm/1181072964.  Google Scholar

[18]

M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems,, Advances in Differential Equations, 8 (2003), 29.   Google Scholar

[19]

M. Taniguchi, A remark on singular perturbation methods via the Lyapunov-Schmidt reduction,, Publ. RIMS. Kyoto Univ., 31 (1995), 1001.  doi: 10.2977/prims/1195163593.  Google Scholar

show all references

References:
[1]

N. Alikakos, G. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations,, Journal of Differential Equations, 126 (1996), 106.  doi: 10.1006/jdeq.1996.0046.  Google Scholar

[2]

S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem,, Journal of Differential Equations, 67 (1987), 212.  doi: 10.1016/0022-0396(87)90147-1.  Google Scholar

[3]

S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I,, Arch. Rational Mech. Anal., 59 (1975), 159.   Google Scholar

[4]

S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II,, Arch. Rational Mech. Anal., 62 (1976), 209.   Google Scholar

[5]

P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter,, Russian Math. Surveys, 29 (1974), 103.  doi: 10.1070/RM1974v029n04ABEH001291.  Google Scholar

[6]

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I,, Applied Mathematical Sciences 51, (1985).  doi: 10.1007/978-1-4612-5034-0.  Google Scholar

[7]

J. K. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan Journal Applied Math., 5 (1988), 367.  doi: 10.1007/BF03167908.  Google Scholar

[8]

C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in inhomogeneous media, part I,, Networks and Heterogeneous Media, 8 (2013), 1009.  doi: 10.3934/nhm.2013.8.1009.  Google Scholar

[9]

T. Iibun and K. Sakamoto, Internal layer intersecting the boundary of domains in the allen-cahn equation,, Japan J. Indust. Appl. Math., 18 (2001), 697.  doi: 10.1007/BF03167411.  Google Scholar

[10]

H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems,, Hiroshima Math. J., 19 (1989), 587.   Google Scholar

[11]

H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems,, Nonlinear Analysis, 13 (1989), 507.  doi: 10.1016/0362-546X(89)90061-8.  Google Scholar

[12]

M. Ito, A remark on singular perturbation methods,, Hiroshima Math. J., 14 (1985), 619.   Google Scholar

[13]

H. Kokubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcations in bistable reaction-diffusion systems,, Journal of Differential Equations, 86 (1990), 260.  doi: 10.1016/0022-0396(90)90033-L.  Google Scholar

[14]

B. Matkowsky and E. Reiss, Singular perturbations of bifurcations,, SIAM J. Appl. Math., 33 (1977), 230.  doi: 10.1137/0133014.  Google Scholar

[15]

K. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165.  doi: 10.1023/A:1004518904533.  Google Scholar

[16]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems,, SIAM J. Math. Anal., 13 (1982), 555.  doi: 10.1137/0513037.  Google Scholar

[17]

Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems,, Rocky Mountain J. Math., 21 (1991), 727.  doi: 10.1216/rmjm/1181072964.  Google Scholar

[18]

M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems,, Advances in Differential Equations, 8 (2003), 29.   Google Scholar

[19]

M. Taniguchi, A remark on singular perturbation methods via the Lyapunov-Schmidt reduction,, Publ. RIMS. Kyoto Univ., 31 (1995), 1001.  doi: 10.2977/prims/1195163593.  Google Scholar

[1]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[2]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[3]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[4]

Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419

[5]

Matt Coles, Stephen Gustafson. A degenerate edge bifurcation in the 1D linearized nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2991-3009. doi: 10.3934/dcds.2016.36.2991

[6]

Michal Fečkan. Bifurcation from degenerate homoclinics in periodically forced systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 359-374. doi: 10.3934/dcds.1999.5.359

[7]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[8]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[9]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[10]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

[11]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[12]

Fang Li, Kimie Nakashima, Wei-Ming Ni. Stability from the point of view of diffusion, relaxation and spatial inhomogeneity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 259-274. doi: 10.3934/dcds.2008.20.259

[13]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

[14]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[15]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[16]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087

[17]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[18]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[19]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[20]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]