\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A combined finite volume - finite element scheme for a dispersive shallow water system

Abstract / Introduction Related Papers Cited by
  • We propose a variational framework for the resolution of a non-hydrostatic Saint-Venant type model with bottom topography. This model is a shallow water type approximation of the incompressible Euler system with free surface and slightly differs from the Green-Nagdhi model, see [13] for more details about the model derivation.
        The numerical approximation relies on a prediction-correction type scheme initially introduced by Chorin-Temam [17] to treat the incompressibility in the Navier-Stokes equations. The hyperbolic part of the system is approximated using a kinetic finite volume solver and the correction step implies to solve a mixed problem where the velocity and the pressure are defined in compatible finite element spaces.
        The resolution of the incompressibility constraint leads to an elliptic problem involving the non-hydrostatic part of the pressure. This step uses a variational formulation of a shallow water version of the incompressibility condition.
        Several numerical experiments are performed to confirm the relevance of our approach.
    Mathematics Subject Classification: Primary: 65M06, 65M60, 76M10; Secondary: 76B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Aïssiouene, M. O. Bristeau, E. Godlewski and J. Sainte-Marie, A robust and stable numerical scheme for a depth-averaged Euler system, Submitted.

    [2]

    B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541.doi: 10.1007/s00222-007-0088-4.

    [3]

    B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana Univ. Math. J., 57 (2008), 97-131.doi: 10.1512/iumj.2008.57.3200.

    [4]

    E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065.doi: 10.1137/S1064827503431090.

    [5]

    E. Audusse, F. Bouchut, M.-O. Bristeau and J. Sainte-Marie, Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system, 2014, URL http://hal.inria.fr/hal-01063577, (Submitted) http://hal.inria.fr/hal-01063577/PDF/kin_hydrost.pdf.

    [6]

    J.-L. Bona, T.-B. Benjamin and J.-J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London Series A, 272 (1972), 47-78.doi: 10.1098/rsta.1972.0032.

    [7]

    P. Bonneton, E. Barthelemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche and M. Tissier, Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, European Journal of Mechanics - B/Fluids, 30 (2011), 589-597, URL http://www.sciencedirect.com/science/article/pii/S0997754611000185, Special Issue: Nearshore Hydrodynamics.doi: 10.1016/j.euromechflu.2011.02.005.

    [8]

    F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws, ESAIM Proc., 15 (2005), 1-17.

    [9]

    F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkhäuser, 2004.doi: 10.1007/b93802.

    [10]

    F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), 129-151.

    [11]

    M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations Solved by Kinetic Schemes, Rapport de recherche RR-4282, INRIA, 2001, URL http://hal.inria.fr/inria-00072305, Projet M3N.

    [12]

    M.-O. Bristeau, N. Goutal and J. Sainte-Marie, Numerical simulations of a non-hydrostatic Shallow Water model, Computers & Fluids, 47 (2011), 51-64.doi: 10.1016/j.compfluid.2011.02.013.

    [13]

    M. O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged Euler system: Derivation and properties, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 961-988, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10801.doi: 10.3934/dcdsb.2015.20.961.

    [14]

    M.-O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 733-759.doi: 10.3934/dcdsb.2008.10.733.

    [15]

    R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Math., 31 (1994), 1-33.doi: 10.1016/S0065-2156(08)70254-0.

    [16]

    F. Chazel, D. Lannes and F. Marche, Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J. Sci. Comput., 48 (2011), 105-116.doi: 10.1007/s10915-010-9395-9.

    [17]

    A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.doi: 10.1090/S0025-5718-1968-0242392-2.

    [18]

    M.-W. Dingemans, Wave Propagation Over Uneven Bottoms, Advanced Series on Ocean Engineering - World Scientific, 1997.doi: 10.1142/9789812796042.

    [19]

    M. Dingemans, Comparison of Computations with Boussinesq-like Models and Laboratory Measurements, Technical Report H1684-12, AST G8M Coastal Morphodybamics Research Programme, 1994.

    [20]

    A. Duran and F. Marche, Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, Communications in Computational Physics, 17 (2015), 721-760, URL https://hal.archives-ouvertes.fr/hal-00980826.doi: 10.4208/cicp.150414.101014a.

    [21]

    W. E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057.doi: 10.1137/0732047.

    [22]

    A. Ern and S. Meunier, A posteriori error analysis of euler-galerkin approximations to coupled elliptic-parabolic problems, ESAIM Math. Model. Numer. Anal., 43 (2009), 353-375, URL http://journals.cambridge.org/abstract\_S0764583X05000166.doi: 10.1051/m2an:2008048.

    [23]

    E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer, New York, 1996.doi: 10.1007/978-1-4612-0713-9.

    [24]

    A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.doi: 10.1017/S0022112076002425.

    [25]

    P. Gresho and S. Chan, Semi-consistent mass matrix techniques for solving the incompressible Navier-Stokes equations, First Int. Conf. on Comput. Methods in Flow Analysis, Okayama University, Japan.

    [26]

    J.-L. Guermond, Some implementations of projection methods for Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 30 (1996), 637-667, URL http://eudml.org/doc/193818.

    [27]

    J.-L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comput., 73 (2004), 1719-1737, URL http://dblp.uni-trier.de/db/journals/moc/moc73.html#GuermondS04.doi: 10.1090/S0025-5718-03-01621-1.

    [28]

    H. Johnston and J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, Journal of Computational Physics, 199 (2004), 221-259, URL http://www.sciencedirect.com/science/article/pii/S002199910400083X.doi: 10.1016/j.jcp.2004.02.009.

    [29]

    D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Physics of Fluids, 21 (2009), 016601.doi: 10.1063/1.3053183.

    [30]

    O. Le Métayer, S. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comput. Phys., 229 (2010), 2034-2045.doi: 10.1016/j.jcp.2009.11.021.

    [31]

    R.-J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.doi: 10.1017/CBO9780511791253.

    [32]

    O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119 (1993), 618-638.doi: 10.1061/(ASCE)0733-950X(1993)119:6(618).

    [33]

    D. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827.doi: 10.1017/S0022112067002605.

    [34]

    O. Pironneau, Méthodes Des Éléments Finis Pour Les Fluides., Masson, 1988.

    [35]

    R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, in The Navier-Stokes Equations II - Theory and Numerical Methods (eds. G. Heywood John, K. Masuda, R. Rautmann and A. Solonnikov Vsevolod), vol. 1530 of Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1992, 167-183, URL http://dx.doi.org/10.1007/BFb0090341.doi: 10.1007/BFb0090341.

    [36]

    J. Shen, Pseudo-compressibility methods for the unsteady incompressible Navier-Stokes equations, 11th AIAA Computational Fluid Dynamic Conference, Orlando, FL, USA.

    [37]

    J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations, SIAM J. Numer. Anal., 32 (1995), 386-403.doi: 10.1137/0732016.

    [38]

    W. C. Thacker, Some exact solutions to the non-linear shallow water wave equations, J. Fluid Mech., 107 (1981), 499-508.doi: 10.1017/S0022112081001882.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(177) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return