March  2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107

Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity

1. 

INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex

2. 

Inria Sophia Antipolis - Méditerranée, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

Received  April 2015 Revised  October 2015 Published  January 2016

We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.
Citation: Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107
References:
[1]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[2]

D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow,, J. Hyperbolic Differ. Equ., 9 (2012), 105.  doi: 10.1142/S0219891612500038.  Google Scholar

[3]

P. Amorim, R. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws,, ESAIM M2AN, 49 (2015), 19.  doi: 10.1051/m2an/2014023.  Google Scholar

[4]

F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation,, Nonlinearity, 24 (2011), 855.  doi: 10.1088/0951-7715/24/3/008.  Google Scholar

[5]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[6]

C. Canudas De Wit, F. Morbidi, L. Leon Ojeda, A. Y. Kibangou, I. Bellicot and P. Bellemain, Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring and forecasting,, IEEE Control Systems, 35 (2015), 23.  doi: 10.1109/MCS.2015.2406657.  Google Scholar

[7]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[9]

R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations,, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 177.  doi: 10.1016/S0252-9602(12)60011-3.  Google Scholar

[10]

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 523.  doi: 10.1007/s00030-012-0164-3.  Google Scholar

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS, (2006).   Google Scholar

[12]

P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards Traffic Flow Model with Non-Local Velocity: Analytical Study and Numerical Results,, Research Report RR-8685, (2015).   Google Scholar

[13]

S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts,, Applied Mathematical Modelling, 38 (2014), 3295.  doi: 10.1016/j.apm.2013.11.039.  Google Scholar

[14]

J. C. Herrera and A. M. Bayen, Incorporation of lagrangian measurements in freeway traffic state estimation,, Transportation Research Part B: Methodological, 44 (2010), 460.  doi: 10.1016/j.trb.2009.10.005.  Google Scholar

[15]

M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams,, Kinetic and Related Models, 5 (2012), 843.  doi: 10.3934/krm.2012.5.843.  Google Scholar

[16]

F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations,, SIAM Journal on Numerical Analysis, 53 (2015), 895.  doi: 10.1137/140959997.  Google Scholar

[17]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[18]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics,, Netw. Heterog. Media, 4 (2009), 431.  doi: 10.3934/nhm.2009.4.431.  Google Scholar

[19]

D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,, Networks and Heterogeneous Media, 6 (2011), 681.  doi: 10.3934/nhm.2011.6.681.  Google Scholar

[20]

K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for system of conservation laws,, SIAM J. Sci. Comput., 24 (2003), 1157.  doi: 10.1137/S1064827501392880.  Google Scholar

[21]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[22]

H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws,, J. Comput. Phys., 87 (1990), 408.  doi: 10.1016/0021-9991(90)90260-8.  Google Scholar

[23]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[24]

A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics,, SIAM J. Appl. Math., 66 (2006), 921.  doi: 10.1137/040617790.  Google Scholar

[25]

M. Treiber and A. Kesting, Traffic Flow Dynamics,, Springer-Verlag, (2013).  doi: 10.1007/978-3-642-32460-4.  Google Scholar

show all references

References:
[1]

A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions,, SIAM Journal on Numerical Analysis, 53 (2015), 963.  doi: 10.1137/140975255.  Google Scholar

[2]

D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow,, J. Hyperbolic Differ. Equ., 9 (2012), 105.  doi: 10.1142/S0219891612500038.  Google Scholar

[3]

P. Amorim, R. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws,, ESAIM M2AN, 49 (2015), 19.  doi: 10.1051/m2an/2014023.  Google Scholar

[4]

F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation,, Nonlinearity, 24 (2011), 855.  doi: 10.1088/0951-7715/24/3/008.  Google Scholar

[5]

S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling,, Numerische Mathematik, (2015), 1.  doi: 10.1007/s00211-015-0717-6.  Google Scholar

[6]

C. Canudas De Wit, F. Morbidi, L. Leon Ojeda, A. Y. Kibangou, I. Bellicot and P. Bellemain, Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring and forecasting,, IEEE Control Systems, 35 (2015), 23.  doi: 10.1109/MCS.2015.2406657.  Google Scholar

[7]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic,, Mathematical Models and Methods in Applied Sciences, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

R. M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM Control Optim. Calc. Var., 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[9]

R. M. Colombo and M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations,, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 177.  doi: 10.1016/S0252-9602(12)60011-3.  Google Scholar

[10]

G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow,, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 523.  doi: 10.1007/s00030-012-0164-3.  Google Scholar

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS, (2006).   Google Scholar

[12]

P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards Traffic Flow Model with Non-Local Velocity: Analytical Study and Numerical Results,, Research Report RR-8685, (2015).   Google Scholar

[13]

S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts,, Applied Mathematical Modelling, 38 (2014), 3295.  doi: 10.1016/j.apm.2013.11.039.  Google Scholar

[14]

J. C. Herrera and A. M. Bayen, Incorporation of lagrangian measurements in freeway traffic state estimation,, Transportation Research Part B: Methodological, 44 (2010), 460.  doi: 10.1016/j.trb.2009.10.005.  Google Scholar

[15]

M. Herty and R. Illner, Coupling of non-local driving behaviour with fundamental diagrams,, Kinetic and Related Models, 5 (2012), 843.  doi: 10.3934/krm.2012.5.843.  Google Scholar

[16]

F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations,, SIAM Journal on Numerical Analysis, 53 (2015), 895.  doi: 10.1137/140959997.  Google Scholar

[17]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[18]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics,, Netw. Heterog. Media, 4 (2009), 431.  doi: 10.3934/nhm.2009.4.431.  Google Scholar

[19]

D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,, Networks and Heterogeneous Media, 6 (2011), 681.  doi: 10.3934/nhm.2011.6.681.  Google Scholar

[20]

K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for system of conservation laws,, SIAM J. Sci. Comput., 24 (2003), 1157.  doi: 10.1137/S1064827501392880.  Google Scholar

[21]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[22]

H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws,, J. Comput. Phys., 87 (1990), 408.  doi: 10.1016/0021-9991(90)90260-8.  Google Scholar

[23]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[24]

A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics,, SIAM J. Appl. Math., 66 (2006), 921.  doi: 10.1137/040617790.  Google Scholar

[25]

M. Treiber and A. Kesting, Traffic Flow Dynamics,, Springer-Verlag, (2013).  doi: 10.1007/978-3-642-32460-4.  Google Scholar

[1]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks & Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[2]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks & Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[3]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[4]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[5]

José A. Carrillo, Raluca Eftimie, Franca Hoffmann. Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic & Related Models, 2015, 8 (3) : 413-441. doi: 10.3934/krm.2015.8.413

[6]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[7]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[8]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[9]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[10]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[11]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[12]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[13]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[14]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[15]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[16]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020041

[17]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[18]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[19]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[20]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]