• Previous Article
    Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography
  • NHM Home
  • This Issue
  • Next Article
    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity
March  2016, 11(1): 123-143. doi: 10.3934/nhm.2016.11.123

The Escalator Boxcar Train method for a system of age-structured equations

1. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa

2. 

Institute of Mathematics, University of Gdańsk, Poland

3. 

Institute of Applied Mathematics, Interdisciplinary Center of Scienti c Computing and BIOQUANT, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg

Received  April 2015 Revised  August 2015 Published  January 2016

The Escalator Boxcar Train method (EBT) is a numerical method for structured population models of McKendrick -- von Foerster type. Those models consist of a certain class of hyperbolic partial differential equations and describe time evolution of the distribution density of the structure variable describing a feature of individuals in the population. The method was introduced in late eighties and widely used in theoretical biology, but its convergence was proven only in recent years using the framework of measure-valued solutions. Till now the EBT method was developed only for scalar equation models. In this paper we derive a full numerical EBT scheme for age-structured, two-sex population model (Fredrickson-Hoppensteadt model), which consists of three coupled hyperbolic partial differential equations with nonlocal boundary conditions. It is the first step towards extending the EBT method to systems of structured population equations.
Citation: Piotr Gwiazda, Karolina Kropielnicka, Anna Marciniak-Czochra. The Escalator Boxcar Train method for a system of age-structured equations. Networks & Heterogeneous Media, 2016, 11 (1) : 123-143. doi: 10.3934/nhm.2016.11.123
References:
[1]

Å. Brännström, L. Carlsson and D. Simpson, On the convergence of the escalator boxcar train,, SIAM J. Numer. Anal., 51 (2013), 3213.  doi: 10.1137/120893215.  Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[3]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications,, Discrete Contin. Dyn. Syst., 23 (2009), 733.  doi: 10.3934/dcds.2009.23.733.  Google Scholar

[4]

A. M. de Roos, Errata: "Numerical methods for structured population models: The escalator boxcar train'',, Numer. Methods Partial Differential Equations, 5 (1989).   Google Scholar

[5]

A. G. Fredrickson, A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models,, Math. Biosci., 10 (1971), 117.  doi: 10.1016/0025-5564(71)90054-X.  Google Scholar

[6]

P. Gwiazda, J. Jabłoński, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded lipschitz distance,, Numer Meth Part Differ Equat, 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[7]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[8]

P. Gwiazda and A. Marciniak-Czochra, Structured population equations in metric spaces,, J. Hyperbolic Differ. Equ., 7 (2010), 733.  doi: 10.1142/S021989161000227X.  Google Scholar

[9]

K. P. Hadeler, Pair formation in age-structured populations,, Acta Appl. Math., 14 (1989), 91.  doi: 10.1007/BF00046676.  Google Scholar

[10]

K. P. Hadeler, R. Waldstätter and A. Wörz-Busekros, Models for pair formation in bisexual populations,, J. Math. Biol., 26 (1988), 635.  doi: 10.1007/BF00276145.  Google Scholar

[11]

F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics,, Society for Industrial and Applied Mathematics, (1975).   Google Scholar

[12]

H. Inaba, An age-structured two-sex model for human population reproduction by first marriage,, Working Paper Series, 15 ().   Google Scholar

[13]

M. Martcheva and F. A. Milner, A two-sex age-structured population model: Well posedness,, Math. Population Stud., 7 (1999), 111.  doi: 10.1080/08898489909525450.  Google Scholar

[14]

A. McKendrick, Applications of mathematics to medical problems,, Proc. Edinburgh Math. Soc., 44 (1926), 98.  doi: 10.1017/S0013091500034428.  Google Scholar

[15]

S. Müller and M. Ortiz, On the $\Gamma$-convergence of discrete dynamics and variational integrators,, J. Nonlinear Sci., 14 (2004), 279.  doi: 10.1007/BF02666023.  Google Scholar

[16]

J. Prüss and W. Schappacher, Persistent age-distributions for a pair-formation model,, J. Math. Biol., 33 (1994), 17.  doi: 10.1007/BF00160172.  Google Scholar

[17]

A. Ulikowska, An age-structured, two-sex model in the space of radon measures: Well posedness,, Kinet Relat Mod, 5 (2012), 873.  doi: 10.3934/krm.2012.5.873.  Google Scholar

[18]

P. E. Zhidkov, On a problem with two-time data for the Vlasov equation,, Nonlinear Anal., 31 (1998), 537.  doi: 10.1016/S0362-546X(97)00420-3.  Google Scholar

show all references

References:
[1]

Å. Brännström, L. Carlsson and D. Simpson, On the convergence of the escalator boxcar train,, SIAM J. Numer. Anal., 51 (2013), 3213.  doi: 10.1137/120893215.  Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[3]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications,, Discrete Contin. Dyn. Syst., 23 (2009), 733.  doi: 10.3934/dcds.2009.23.733.  Google Scholar

[4]

A. M. de Roos, Errata: "Numerical methods for structured population models: The escalator boxcar train'',, Numer. Methods Partial Differential Equations, 5 (1989).   Google Scholar

[5]

A. G. Fredrickson, A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models,, Math. Biosci., 10 (1971), 117.  doi: 10.1016/0025-5564(71)90054-X.  Google Scholar

[6]

P. Gwiazda, J. Jabłoński, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded lipschitz distance,, Numer Meth Part Differ Equat, 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[7]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[8]

P. Gwiazda and A. Marciniak-Czochra, Structured population equations in metric spaces,, J. Hyperbolic Differ. Equ., 7 (2010), 733.  doi: 10.1142/S021989161000227X.  Google Scholar

[9]

K. P. Hadeler, Pair formation in age-structured populations,, Acta Appl. Math., 14 (1989), 91.  doi: 10.1007/BF00046676.  Google Scholar

[10]

K. P. Hadeler, R. Waldstätter and A. Wörz-Busekros, Models for pair formation in bisexual populations,, J. Math. Biol., 26 (1988), 635.  doi: 10.1007/BF00276145.  Google Scholar

[11]

F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics,, Society for Industrial and Applied Mathematics, (1975).   Google Scholar

[12]

H. Inaba, An age-structured two-sex model for human population reproduction by first marriage,, Working Paper Series, 15 ().   Google Scholar

[13]

M. Martcheva and F. A. Milner, A two-sex age-structured population model: Well posedness,, Math. Population Stud., 7 (1999), 111.  doi: 10.1080/08898489909525450.  Google Scholar

[14]

A. McKendrick, Applications of mathematics to medical problems,, Proc. Edinburgh Math. Soc., 44 (1926), 98.  doi: 10.1017/S0013091500034428.  Google Scholar

[15]

S. Müller and M. Ortiz, On the $\Gamma$-convergence of discrete dynamics and variational integrators,, J. Nonlinear Sci., 14 (2004), 279.  doi: 10.1007/BF02666023.  Google Scholar

[16]

J. Prüss and W. Schappacher, Persistent age-distributions for a pair-formation model,, J. Math. Biol., 33 (1994), 17.  doi: 10.1007/BF00160172.  Google Scholar

[17]

A. Ulikowska, An age-structured, two-sex model in the space of radon measures: Well posedness,, Kinet Relat Mod, 5 (2012), 873.  doi: 10.3934/krm.2012.5.873.  Google Scholar

[18]

P. E. Zhidkov, On a problem with two-time data for the Vlasov equation,, Nonlinear Anal., 31 (1998), 537.  doi: 10.1016/S0362-546X(97)00420-3.  Google Scholar

[1]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[2]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[3]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[4]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[5]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[10]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[13]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[14]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[15]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[16]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[17]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[18]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[19]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[20]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

[Back to Top]