March  2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145

Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography

1. 

Seminar for Applied Mathematics (SAM), Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland, Switzerland

Received  April 2015 Revised  July 2015 Published  January 2016

We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numerical method.
Citation: Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145
References:
[1]

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klien and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM. J. Sci. Comp., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090.

[2]

M. Castro, J. M. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with non-conservative products, Math. Comp., 75 (2006), 1103-1134. doi: 10.1090/S0025-5718-06-01851-5.

[3]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. doi: 10.1007/3-540-29089-3_14.

[4]

U. S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, 230 (2011), 5587-5609. doi: 10.1016/j.jcp.2011.03.042.

[5]

J. M. Greenberg and A. Y. LeRoux, A well-balanced scheme for numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16. doi: 10.1137/0733001.

[6]

A. Hiltebrand, Entropy-stable Discontinuous Galerkin Finite Element Methods with Streamline Diffusion and Shock-capturing for Hyperbolic Systems of Conservation Laws, Ph.D thesis, ETH Zurich, 2014, No. 22279.

[7]

A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numerische Mathematik, 126 (2014), 103-151. doi: 10.1007/s00211-013-0558-0.

[8]

J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Model. Meth. Appl. Sci., 5 (1995), 367-386. doi: 10.1142/S021820259500022X.

[9]

S. Jin, A steady state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35 (2001), 631-645. doi: 10.1051/m2an:2001130.

[10]

S. Jin and X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comput. Math., 22 (2004), 230-249.

[11]

A. Kurganov and D. Levy, Central-upwind schemes for the St. Vernant system, Math. Model. Num. Anal., 36 (2002), 397-425. doi: 10.1051/m2an:2002019.

[12]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[13]

R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365. doi: 10.1006/jcph.1998.6058.

[14]

S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499. doi: 10.1016/j.jcp.2005.08.019.

show all references

References:
[1]

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klien and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM. J. Sci. Comp., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090.

[2]

M. Castro, J. M. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with non-conservative products, Math. Comp., 75 (2006), 1103-1134. doi: 10.1090/S0025-5718-06-01851-5.

[3]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. doi: 10.1007/3-540-29089-3_14.

[4]

U. S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, 230 (2011), 5587-5609. doi: 10.1016/j.jcp.2011.03.042.

[5]

J. M. Greenberg and A. Y. LeRoux, A well-balanced scheme for numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16. doi: 10.1137/0733001.

[6]

A. Hiltebrand, Entropy-stable Discontinuous Galerkin Finite Element Methods with Streamline Diffusion and Shock-capturing for Hyperbolic Systems of Conservation Laws, Ph.D thesis, ETH Zurich, 2014, No. 22279.

[7]

A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numerische Mathematik, 126 (2014), 103-151. doi: 10.1007/s00211-013-0558-0.

[8]

J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Model. Meth. Appl. Sci., 5 (1995), 367-386. doi: 10.1142/S021820259500022X.

[9]

S. Jin, A steady state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35 (2001), 631-645. doi: 10.1051/m2an:2001130.

[10]

S. Jin and X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comput. Math., 22 (2004), 230-249.

[11]

A. Kurganov and D. Levy, Central-upwind schemes for the St. Vernant system, Math. Model. Num. Anal., 36 (2002), 397-425. doi: 10.1051/m2an:2002019.

[12]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[13]

R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365. doi: 10.1006/jcph.1998.6058.

[14]

S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499. doi: 10.1016/j.jcp.2005.08.019.

[1]

Bashar Khorbatly. Long, intermediate and short-term well-posedness of high precision shallow-water models with topography variations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022068

[2]

Xenia Kerkhoff, Sandra May. Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021054

[3]

Yuming Zhang. On continuity equations in space-time domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[4]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[5]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[6]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[7]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[8]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[9]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure and Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[10]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[11]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[12]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[13]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[14]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure and Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[15]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control and Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[16]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[17]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[18]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[19]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[20]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]