Citation: |
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Space of Probability Measures, Lectures in Mathematics, Birkäuser, 2005. |
[2] |
D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Model. Math. Anal. Numer., 31 (1997), 615-641. |
[3] |
A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equation with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710.doi: 10.1088/0951-7715/22/3/009. |
[4] |
S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Diff. Eq., 36 (2011), 777-796.doi: 10.1080/03605302.2010.534224. |
[5] |
M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380.doi: 10.1016/j.jde.2005.07.025. |
[6] |
F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA, 32 (1998), 891-933.doi: 10.1016/S0362-546X(97)00536-1. |
[7] |
F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Eq., 24 (1999), 2173-2189.doi: 10.1080/03605309908821498. |
[8] |
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Comm. in Comp. Phys., 17 (2015), 233-258.doi: 10.4208/cicp.160214.010814a. |
[9] |
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.doi: 10.1215/00127094-2010-211. |
[10] |
J. A. Carrillo, F. James, F. Lagoutière and N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations, 260 (2016), 304-338.doi: 10.1016/j.jde.2015.08.048. |
[11] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p.doi: 10.1142/S0218202511500230. |
[12] |
K. Craig and A. L. Bertozzi, A blob method for the aggregation equation, Math. Comp., (2015), 1-37.doi: 10.1090/mcom3033. |
[13] |
Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615.doi: 10.1007/s00285-005-0334-6. |
[14] |
F. Filbet, Ph. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.doi: 10.1007/s00285-004-0286-2. |
[15] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-0713-9. |
[16] |
L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comput., 69 (2000), 987-1015.doi: 10.1090/S0025-5718-00-01185-6. |
[17] |
A. Harten, On a class of high resolution total-variation-stable finite difference schemes, SIAM Jour. of Numer. Anal., 21 (1984), 1-23.doi: 10.1137/0721001. |
[18] |
F. James and N. Vauchelet, A remark on duality solutions for some weakly nonlinear scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I, 349 (2011), 657-661.doi: 10.1016/j.crma.2011.05.004. |
[19] |
F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregation dynamics, Nonlinear Diff. Eq. and Appl. (NoDEA), 20 (2013), 101-127.doi: 10.1007/s00030-012-0155-4. |
[20] |
F. James and N. Vauchelet, Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations, Disc. Cont. Dyn. Syst., 36 (2016), 1355-1382. |
[21] |
F. James and N. Vauchelet, Numerical method for one-dimensional aggregation equations, SIAM J. Numer. Anal., 53 (2015), 895-916.doi: 10.1137/140959997. |
[22] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359. |
[23] |
A.-Y. Le Roux, A numerical conception of entropy for quasi-linear equations, Math. of Comp., 31 (1977), 848-872.doi: 10.1090/S0025-5718-1977-0478651-3. |
[24] |
H. Li and G. Toscani, Long time asymptotics of kinetic models of granular flows, Arch. Rat. Mech. Anal., 172 (2004), 407-428.doi: 10.1007/s00205-004-0307-8. |
[25] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic Crowd Motion Model of the gradient-flow type, Math. Models and Methods in Applied Sci., 20 (2010), 1787-1821.doi: 10.1142/S0218202510004799. |
[26] |
J. Nieto, F. Poupaud and J. Soler, High field limit for Vlasov-Poisson-Fokker-Planck equations, Arch. Rational Mech. Anal., 158 (2001), 29-59.doi: 10.1007/s002050100139. |
[27] |
A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, Berlin, 2001.doi: 10.1007/978-1-4757-4978-6. |
[28] |
F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal., 9 (2002), 533-561.doi: 10.4310/MAA.2002.v9.n4.a4. |
[29] |
F. Poupaud and M. Rascle, Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Partial Diff. Equ., 22 (1997), 337-358.doi: 10.1080/03605309708821265. |
[30] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, Amer. Math. Soc, Providence, 2003.doi: 10.1007/b12016. |