• Previous Article
    On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion
  • NHM Home
  • This Issue
  • Next Article
    Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography
March  2016, 11(1): 163-180. doi: 10.3934/nhm.2016.11.163

One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation

1. 

Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans & CNRS UMR 7349, Fédération Denis Poisson, Université d'Orléans & CNRS FR 2964, 45067 Orléans Cedex 2

2. 

Sorbonne Universites, UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions UMR CNRS 7598, Inria, F-75005, Paris, France

Received  April 2015 Revised  September 2015 Published  January 2016

The nonlocal nonlinear aggregation equation in one space dimension is investigated. In the so-called attractive case smooth solutions blow up in finite time, so that weak measure solutions are introduced. The velocity involved in the equation becomes discontinuous, and a particular care has to be paid to its definition as well as the formulation of the corresponding flux. When this is done, the notion of duality solutions allows to obtain global in time existence and uniqueness for measure solutions. An upwind finite volume scheme is also analyzed, and the convergence towards the unique solution is proved. Numerical examples show the dynamics of the solutions after the blow up time.
Citation: François James, Nicolas Vauchelet. One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 163-180. doi: 10.3934/nhm.2016.11.163
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Space of Probability Measures, Lectures in Mathematics, Birkäuser, 2005.

[2]

D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Model. Math. Anal. Numer., 31 (1997), 615-641.

[3]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equation with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710. doi: 10.1088/0951-7715/22/3/009.

[4]

S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Diff. Eq., 36 (2011), 777-796. doi: 10.1080/03605302.2010.534224.

[5]

M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380. doi: 10.1016/j.jde.2005.07.025.

[6]

F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA, 32 (1998), 891-933. doi: 10.1016/S0362-546X(97)00536-1.

[7]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[8]

J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Comm. in Comp. Phys., 17 (2015), 233-258. doi: 10.4208/cicp.160214.010814a.

[9]

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211.

[10]

J. A. Carrillo, F. James, F. Lagoutière and N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations, 260 (2016), 304-338. doi: 10.1016/j.jde.2015.08.048.

[11]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p. doi: 10.1142/S0218202511500230.

[12]

K. Craig and A. L. Bertozzi, A blob method for the aggregation equation, Math. Comp., (2015), 1-37. doi: 10.1090/mcom3033.

[13]

Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615. doi: 10.1007/s00285-005-0334-6.

[14]

F. Filbet, Ph. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[15]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9.

[16]

L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comput., 69 (2000), 987-1015. doi: 10.1090/S0025-5718-00-01185-6.

[17]

A. Harten, On a class of high resolution total-variation-stable finite difference schemes, SIAM Jour. of Numer. Anal., 21 (1984), 1-23. doi: 10.1137/0721001.

[18]

F. James and N. Vauchelet, A remark on duality solutions for some weakly nonlinear scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I, 349 (2011), 657-661. doi: 10.1016/j.crma.2011.05.004.

[19]

F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregation dynamics, Nonlinear Diff. Eq. and Appl. (NoDEA), 20 (2013), 101-127. doi: 10.1007/s00030-012-0155-4.

[20]

F. James and N. Vauchelet, Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations, Disc. Cont. Dyn. Syst., 36 (2016), 1355-1382.

[21]

F. James and N. Vauchelet, Numerical method for one-dimensional aggregation equations, SIAM J. Numer. Anal., 53 (2015), 895-916. doi: 10.1137/140959997.

[22]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[23]

A.-Y. Le Roux, A numerical conception of entropy for quasi-linear equations, Math. of Comp., 31 (1977), 848-872. doi: 10.1090/S0025-5718-1977-0478651-3.

[24]

H. Li and G. Toscani, Long time asymptotics of kinetic models of granular flows, Arch. Rat. Mech. Anal., 172 (2004), 407-428. doi: 10.1007/s00205-004-0307-8.

[25]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic Crowd Motion Model of the gradient-flow type, Math. Models and Methods in Applied Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799.

[26]

J. Nieto, F. Poupaud and J. Soler, High field limit for Vlasov-Poisson-Fokker-Planck equations, Arch. Rational Mech. Anal., 158 (2001), 29-59. doi: 10.1007/s002050100139.

[27]

A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, Berlin, 2001. doi: 10.1007/978-1-4757-4978-6.

[28]

F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal., 9 (2002), 533-561. doi: 10.4310/MAA.2002.v9.n4.a4.

[29]

F. Poupaud and M. Rascle, Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Partial Diff. Equ., 22 (1997), 337-358. doi: 10.1080/03605309708821265.

[30]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, Amer. Math. Soc, Providence, 2003. doi: 10.1007/b12016.

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Space of Probability Measures, Lectures in Mathematics, Birkäuser, 2005.

[2]

D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media, RAIRO Model. Math. Anal. Numer., 31 (1997), 615-641.

[3]

A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equation with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710. doi: 10.1088/0951-7715/22/3/009.

[4]

S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Diff. Eq., 36 (2011), 777-796. doi: 10.1080/03605302.2010.534224.

[5]

M. Bodnar and J. J. L. Velázquez, An integro-differential equation arising as a limit of individual cell-based models, J. Differential Equations, 222 (2006), 341-380. doi: 10.1016/j.jde.2005.07.025.

[6]

F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA, 32 (1998), 891-933. doi: 10.1016/S0362-546X(97)00536-1.

[7]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Eq., 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[8]

J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Comm. in Comp. Phys., 17 (2015), 233-258. doi: 10.4208/cicp.160214.010814a.

[9]

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271. doi: 10.1215/00127094-2010-211.

[10]

J. A. Carrillo, F. James, F. Lagoutière and N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations, 260 (2016), 304-338. doi: 10.1016/j.jde.2015.08.048.

[11]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34p. doi: 10.1142/S0218202511500230.

[12]

K. Craig and A. L. Bertozzi, A blob method for the aggregation equation, Math. Comp., (2015), 1-37. doi: 10.1090/mcom3033.

[13]

Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol., 51 (2005), 595-615. doi: 10.1007/s00285-005-0334-6.

[14]

F. Filbet, Ph. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[15]

E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9.

[16]

L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comput., 69 (2000), 987-1015. doi: 10.1090/S0025-5718-00-01185-6.

[17]

A. Harten, On a class of high resolution total-variation-stable finite difference schemes, SIAM Jour. of Numer. Anal., 21 (1984), 1-23. doi: 10.1137/0721001.

[18]

F. James and N. Vauchelet, A remark on duality solutions for some weakly nonlinear scalar conservation laws, C. R. Acad. Sci. Paris, Sér. I, 349 (2011), 657-661. doi: 10.1016/j.crma.2011.05.004.

[19]

F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregation dynamics, Nonlinear Diff. Eq. and Appl. (NoDEA), 20 (2013), 101-127. doi: 10.1007/s00030-012-0155-4.

[20]

F. James and N. Vauchelet, Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations, Disc. Cont. Dyn. Syst., 36 (2016), 1355-1382.

[21]

F. James and N. Vauchelet, Numerical method for one-dimensional aggregation equations, SIAM J. Numer. Anal., 53 (2015), 895-916. doi: 10.1137/140959997.

[22]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[23]

A.-Y. Le Roux, A numerical conception of entropy for quasi-linear equations, Math. of Comp., 31 (1977), 848-872. doi: 10.1090/S0025-5718-1977-0478651-3.

[24]

H. Li and G. Toscani, Long time asymptotics of kinetic models of granular flows, Arch. Rat. Mech. Anal., 172 (2004), 407-428. doi: 10.1007/s00205-004-0307-8.

[25]

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic Crowd Motion Model of the gradient-flow type, Math. Models and Methods in Applied Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799.

[26]

J. Nieto, F. Poupaud and J. Soler, High field limit for Vlasov-Poisson-Fokker-Planck equations, Arch. Rational Mech. Anal., 158 (2001), 29-59. doi: 10.1007/s002050100139.

[27]

A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer, Berlin, 2001. doi: 10.1007/978-1-4757-4978-6.

[28]

F. Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal., 9 (2002), 533-561. doi: 10.4310/MAA.2002.v9.n4.a4.

[29]

F. Poupaud and M. Rascle, Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Partial Diff. Equ., 22 (1997), 337-358. doi: 10.1080/03605309708821265.

[30]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, Amer. Math. Soc, Providence, 2003. doi: 10.1007/b12016.

[1]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[2]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[3]

Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic and Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041

[4]

Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems and Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044

[5]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[6]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[7]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[8]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[9]

István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134

[10]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[11]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[12]

Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166

[13]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[14]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[15]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[16]

Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729

[17]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[18]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[19]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[20]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]