June  2016, 11(2): 239-250. doi: 10.3934/nhm.2016.11.239

Morrey spaces norms and criteria for blowup in chemotaxis models

1. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50--384 Wrocław

2. 

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received  April 2015 Revised  July 2015 Published  March 2016

Two-dimensional Keller--Segel models for the chemotaxis with fractional (anomalous) diffusion are considered. Criteria for blowup of solutions in terms of suitable Morrey spaces norms are derived. Similarly, a criterion for blowup of solutions in terms of the radial initial concentrations, related to suitable Morrey spaces norms, is shown for radially symmetric solutions of chemotaxis in several dimensions. Those conditions are, in a sense, complementary to the ones guaranteeing the global-in-time existence of solutions.
Citation: Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks & Heterogeneous Media, 2016, 11 (2) : 239-250. doi: 10.3934/nhm.2016.11.239
References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.   Google Scholar

[2]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Coll. Math., 68 (1995), 229.   Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.   Google Scholar

[4]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247.  doi: 10.1007/s00028-009-0048-0.  Google Scholar

[5]

P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup of solutions in two-dimensional chemotaxis models,, , ().   Google Scholar

[6]

P. Biler, G. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems,, Nonlinearity, 28 (2015), 4369.  doi: 10.1088/0951-7715/28/12/4369.  Google Scholar

[7]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112.  doi: 10.1002/mma.1036.  Google Scholar

[8]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data,, Bull. Pol. Acad. Sci., 63 (2015), 41.  doi: 10.4064/ba63-1-6.  Google Scholar

[9]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations,, Appl. Math. (Warsaw), 38 (2011), 243.  doi: 10.4064/am38-3-1.  Google Scholar

[10]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differ. Integral Equ., 16 (2003), 427.   Google Scholar

[11]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Equ., 18 (2013), 1189.   Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.  doi: 10.1155/S1025583401000042.  Google Scholar

show all references

References:
[1]

P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation,, Studia Math., 114 (1995), 181.   Google Scholar

[2]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Coll. Math., 68 (1995), 229.   Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.   Google Scholar

[4]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model,, J. Evol. Equ., 10 (2010), 247.  doi: 10.1007/s00028-009-0048-0.  Google Scholar

[5]

P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup of solutions in two-dimensional chemotaxis models,, , ().   Google Scholar

[6]

P. Biler, G. Karch and J. Zienkiewicz, Optimal criteria for blowup of radial and $N$-symmetric solutions of chemotaxis systems,, Nonlinearity, 28 (2015), 4369.  doi: 10.1088/0951-7715/28/12/4369.  Google Scholar

[7]

P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion,, Math. Methods Appl. Sci., 32 (2009), 112.  doi: 10.1002/mma.1036.  Google Scholar

[8]

P. Biler and J. Zienkiewicz, Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data,, Bull. Pol. Acad. Sci., 63 (2015), 41.  doi: 10.4064/ba63-1-6.  Google Scholar

[9]

G. Karch and K. Suzuki, Blow-up versus global existence of solutions to aggregation equations,, Appl. Math. (Warsaw), 38 (2011), 243.  doi: 10.4064/am38-3-1.  Google Scholar

[10]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differ. Integral Equ., 16 (2003), 427.   Google Scholar

[11]

P.-G. Lemarié-Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space,, Adv. Diff. Equ., 18 (2013), 1189.   Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37.  doi: 10.1155/S1025583401000042.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]