June  2016, 11(2): 251-262. doi: 10.3934/nhm.2016.11.251

Non-critical fractional conservation laws in domains with boundary

1. 

Laboratoire de Mathématiques de Besancon U.F.R. S.T, 16 route de Gray, 25030 BESANCON, France

Received  May 2015 Revised  July 2015 Published  March 2016

We study bounded solutions for a multidimensional conservation law coupled with a power $s\in (0,1)$ of the Dirichlet laplacian acting in a domain. If $s \leq 1/2$ then the study centers on the concept of entropy solutions for which existence and uniqueness are proved to hold. If $s >1/2$ then the focus is rather on the $C^\infty$-regularity of weak solutions. This kind of results is known in $\mathbb{R}^N$ but perhaps not so much in domains. The extension given here relies on an abstract spectral approach, which would also allow many other types of nonlocal operators.
Citation: Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks & Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251
References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145.  doi: 10.1007/s00028-006-0253-z.  Google Scholar

[2]

N. Alibaud and B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 997.  doi: 10.1016/j.anihpc.2010.01.008.  Google Scholar

[3]

N. Alibaud and M. Brassart, Entropy solutions to fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[4]

N. Alibaud and M. Brassart, Parabolicity for fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[5]

N. Alibaud, J. Droniou and J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations,, J. Hyperbolic Differ. Equ., 4 (2007), 479.  doi: 10.1142/S0219891607001227.  Google Scholar

[6]

P.L. Butzer and H. Berens, Semigroups of Operators and Approximation,, Springer-Verlag, (1967).   Google Scholar

[7]

C. Bardos, A. Leroux and J. C. Nedelec, First-order quasilinear equations with boundary conditions,, Comm. in Part. Diff. Eq., 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

C. H. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 471.  doi: 10.1016/j.anihpc.2009.11.008.  Google Scholar

[9]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation,, Discrete and Continuous Dynamical Systems, 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[10]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413.  doi: 10.1016/j.anihpc.2011.02.006.  Google Scholar

[11]

H. Dong and D. Du, Finite time singularities and global well-posedness for fractal Burgers' equations,, Indiana Univ. Math, 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[12]

J. Droniou, Th. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[13]

J. Endal and E. R. Jakobsen, $L^1$ contraction for bounded (nonintegrable) solutions of degenerate parabolic equations,, SIAM J. Math. Anal., 46 (2014), 3957.  doi: 10.1137/140966599.  Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[15]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Mathematicae, 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[16]

S. N. Kruzhkov, First order quasilinear equations with several independent variables,, Math. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[17]

C. Miao and G. Wu, Global well-posedness for the critical Burgers equation in critical Besov spaces,, J. Diff. Eq., 247 (2009), 1673.  doi: 10.1016/j.jde.2009.03.028.  Google Scholar

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

K. Yosida, Functional Analysis,, 4th edition, (1974).   Google Scholar

show all references

References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145.  doi: 10.1007/s00028-006-0253-z.  Google Scholar

[2]

N. Alibaud and B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 997.  doi: 10.1016/j.anihpc.2010.01.008.  Google Scholar

[3]

N. Alibaud and M. Brassart, Entropy solutions to fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[4]

N. Alibaud and M. Brassart, Parabolicity for fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[5]

N. Alibaud, J. Droniou and J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations,, J. Hyperbolic Differ. Equ., 4 (2007), 479.  doi: 10.1142/S0219891607001227.  Google Scholar

[6]

P.L. Butzer and H. Berens, Semigroups of Operators and Approximation,, Springer-Verlag, (1967).   Google Scholar

[7]

C. Bardos, A. Leroux and J. C. Nedelec, First-order quasilinear equations with boundary conditions,, Comm. in Part. Diff. Eq., 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

C. H. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 471.  doi: 10.1016/j.anihpc.2009.11.008.  Google Scholar

[9]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation,, Discrete and Continuous Dynamical Systems, 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[10]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413.  doi: 10.1016/j.anihpc.2011.02.006.  Google Scholar

[11]

H. Dong and D. Du, Finite time singularities and global well-posedness for fractal Burgers' equations,, Indiana Univ. Math, 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[12]

J. Droniou, Th. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[13]

J. Endal and E. R. Jakobsen, $L^1$ contraction for bounded (nonintegrable) solutions of degenerate parabolic equations,, SIAM J. Math. Anal., 46 (2014), 3957.  doi: 10.1137/140966599.  Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[15]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Mathematicae, 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[16]

S. N. Kruzhkov, First order quasilinear equations with several independent variables,, Math. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[17]

C. Miao and G. Wu, Global well-posedness for the critical Burgers equation in critical Besov spaces,, J. Diff. Eq., 247 (2009), 1673.  doi: 10.1016/j.jde.2009.03.028.  Google Scholar

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

K. Yosida, Functional Analysis,, 4th edition, (1974).   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]