June  2016, 11(2): 251-262. doi: 10.3934/nhm.2016.11.251

Non-critical fractional conservation laws in domains with boundary

1. 

Laboratoire de Mathématiques de Besancon U.F.R. S.T, 16 route de Gray, 25030 BESANCON, France

Received  May 2015 Revised  July 2015 Published  March 2016

We study bounded solutions for a multidimensional conservation law coupled with a power $s\in (0,1)$ of the Dirichlet laplacian acting in a domain. If $s \leq 1/2$ then the study centers on the concept of entropy solutions for which existence and uniqueness are proved to hold. If $s >1/2$ then the focus is rather on the $C^\infty$-regularity of weak solutions. This kind of results is known in $\mathbb{R}^N$ but perhaps not so much in domains. The extension given here relies on an abstract spectral approach, which would also allow many other types of nonlocal operators.
Citation: Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks & Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251
References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145.  doi: 10.1007/s00028-006-0253-z.  Google Scholar

[2]

N. Alibaud and B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 997.  doi: 10.1016/j.anihpc.2010.01.008.  Google Scholar

[3]

N. Alibaud and M. Brassart, Entropy solutions to fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[4]

N. Alibaud and M. Brassart, Parabolicity for fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[5]

N. Alibaud, J. Droniou and J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations,, J. Hyperbolic Differ. Equ., 4 (2007), 479.  doi: 10.1142/S0219891607001227.  Google Scholar

[6]

P.L. Butzer and H. Berens, Semigroups of Operators and Approximation,, Springer-Verlag, (1967).   Google Scholar

[7]

C. Bardos, A. Leroux and J. C. Nedelec, First-order quasilinear equations with boundary conditions,, Comm. in Part. Diff. Eq., 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

C. H. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 471.  doi: 10.1016/j.anihpc.2009.11.008.  Google Scholar

[9]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation,, Discrete and Continuous Dynamical Systems, 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[10]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413.  doi: 10.1016/j.anihpc.2011.02.006.  Google Scholar

[11]

H. Dong and D. Du, Finite time singularities and global well-posedness for fractal Burgers' equations,, Indiana Univ. Math, 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[12]

J. Droniou, Th. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[13]

J. Endal and E. R. Jakobsen, $L^1$ contraction for bounded (nonintegrable) solutions of degenerate parabolic equations,, SIAM J. Math. Anal., 46 (2014), 3957.  doi: 10.1137/140966599.  Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[15]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Mathematicae, 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[16]

S. N. Kruzhkov, First order quasilinear equations with several independent variables,, Math. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[17]

C. Miao and G. Wu, Global well-posedness for the critical Burgers equation in critical Besov spaces,, J. Diff. Eq., 247 (2009), 1673.  doi: 10.1016/j.jde.2009.03.028.  Google Scholar

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

K. Yosida, Functional Analysis,, 4th edition, (1974).   Google Scholar

show all references

References:
[1]

N. Alibaud, Entropy formulation for fractal conservation laws,, J. Evol. Equ., 7 (2007), 145.  doi: 10.1007/s00028-006-0253-z.  Google Scholar

[2]

N. Alibaud and B. Andreianov, Non-uniqueness of weak solutions for fractal Burgers equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 997.  doi: 10.1016/j.anihpc.2010.01.008.  Google Scholar

[3]

N. Alibaud and M. Brassart, Entropy solutions to fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[4]

N. Alibaud and M. Brassart, Parabolicity for fractional conservation laws in domains,, In preparation, (2015).   Google Scholar

[5]

N. Alibaud, J. Droniou and J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations,, J. Hyperbolic Differ. Equ., 4 (2007), 479.  doi: 10.1142/S0219891607001227.  Google Scholar

[6]

P.L. Butzer and H. Berens, Semigroups of Operators and Approximation,, Springer-Verlag, (1967).   Google Scholar

[7]

C. Bardos, A. Leroux and J. C. Nedelec, First-order quasilinear equations with boundary conditions,, Comm. in Part. Diff. Eq., 4 (1979), 1017.  doi: 10.1080/03605307908820117.  Google Scholar

[8]

C. H. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers' equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 471.  doi: 10.1016/j.anihpc.2009.11.008.  Google Scholar

[9]

C. H. Chan, M. Czubak and L. Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation,, Discrete and Continuous Dynamical Systems, 27 (2010), 847.  doi: 10.3934/dcds.2010.27.847.  Google Scholar

[10]

S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413.  doi: 10.1016/j.anihpc.2011.02.006.  Google Scholar

[11]

H. Dong and D. Du, Finite time singularities and global well-posedness for fractal Burgers' equations,, Indiana Univ. Math, 58 (2009), 807.  doi: 10.1512/iumj.2009.58.3505.  Google Scholar

[12]

J. Droniou, Th. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[13]

J. Endal and E. R. Jakobsen, $L^1$ contraction for bounded (nonintegrable) solutions of degenerate parabolic equations,, SIAM J. Math. Anal., 46 (2014), 3957.  doi: 10.1137/140966599.  Google Scholar

[14]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[15]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Mathematicae, 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[16]

S. N. Kruzhkov, First order quasilinear equations with several independent variables,, Math. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[17]

C. Miao and G. Wu, Global well-posedness for the critical Burgers equation in critical Besov spaces,, J. Diff. Eq., 247 (2009), 1673.  doi: 10.1016/j.jde.2009.03.028.  Google Scholar

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

K. Yosida, Functional Analysis,, 4th edition, (1974).   Google Scholar

[1]

Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419

[2]

T. L. van Noorden, I. S. Pop, M. Röger. Crystal dissolution and precipitation in porous media: L$^1$-contraction and uniqueness. Conference Publications, 2007, 2007 (Special) : 1013-1020. doi: 10.3934/proc.2007.2007.1013

[3]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[4]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

[5]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[6]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[7]

Motohiro Sobajima. On the threshold for Kato's selfadjointness problem and its $L^p$-generalization. Evolution Equations & Control Theory, 2014, 3 (4) : 699-711. doi: 10.3934/eect.2014.3.699

[8]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[9]

Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35

[10]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[11]

Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

[12]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[13]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[14]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[15]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[16]

Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks & Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015

[17]

Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163

[18]

Jean-Michel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1337-1359. doi: 10.3934/dcdsb.2010.14.1337

[19]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[20]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]