\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solutions of the Aw-Rascle-Zhang system with point constraints

Abstract Related Papers Cited by
  • We revisit the entropy formulation and the wave-front tracking construction of physically admissible solutions of the Aw-Rascle and Zhang (ARZ) ``second-order'' model for vehicular traffic. A Kruzhkov-like family of entropies is introduced to select the admissible shocks. This tool allows to define rigorously the appropriate notion of admissible weak solution and to approximate the solutions of the ARZ model with point constraint. Stability of solutions w.r.t. strong convergence is justified. We propose a finite volumes numerical scheme for the constrained ARZ, and we show that it can correctly locate contact discontinuities and take the constraint into account.
    Mathematics Subject Classification: Primary: 35L65; Secondary: 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN (2016), appeared online.doi: 10.1051/m2an/2015078.

    [2]

    B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Mathematical Biosciences and Engineering, 12 (2015), 259-278, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10696.

    [3]

    B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722.doi: 10.1142/S0218202514500341.

    [4]

    B. Andreianov, C. Donadello and M. D. Rosini, A second order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences (2016), appeared online.doi: 10.1142/S0218202516500172.

    [5]

    B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, 115 (2010), 609-645.doi: 10.1007/s00211-009-0286-7.

    [6]

    A. Aw, Existence of a global entropic weak solution for the Aw-Rascle model, Int. J. Evol. Equ., 9 (2014), 53-70.

    [7]

    A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.doi: 10.1137/S0036139997332099.

    [8]

    F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004.doi: 10.1007/b93802.

    [9]

    A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000.

    [10]

    C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551, URL http://projecteuclid.org/euclid.cms/1188405667.doi: 10.4310/CMS.2007.v5.n3.a2.

    [11]

    C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. application to pedestrian flow modeling, Networks and Heterogeneous Media, 8 (2013), 433-463, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8648.doi: 10.3934/nhm.2013.8.433.

    [12]

    G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.doi: 10.1007/s002050050146.

    [13]

    R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.doi: 10.1016/j.jde.2006.10.014.

    [14]

    R. M. Colombo, P. Goatin and M. D. Rosini, A macroscopic model for pedestrian flows in panic situations, Proceedings of the 4th Polish-Japanese Days. GAKUTO International Series. Mathematical Sciences and Applications, 32 (2010), 255-272.

    [15]

    R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.doi: 10.1002/mma.624.

    [16]

    R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model, Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728.doi: 10.1016/j.nonrwa.2008.08.002.

    [17]

    R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling, in Applied and Industrial Mathematics in Italy III, 82 (2010), 244-255.doi: 10.1142/9789814280303_0022.

    [18]

    Colombo, M. Rinaldo, P. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM: M2AN, 45 (2011), 853-872.doi: 10.1051/m2an/2010105.

    [19]

    C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41.doi: 10.1016/0022-247X(72)90114-X.

    [20]

    C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14.

    [21]

    R. E. Ferreira and C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle traffic flow model, Far East J. Math. Sci. (FJMS), 43 (2010), 203-223.

    [22]

    M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.doi: 10.1016/j.jmaa.2011.01.033.

    [23]

    M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008), 45-63.doi: 10.1142/S0219891608001428.

    [24]

    H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, Springer, New York, 2011.doi: 10.1007/978-3-642-23911-3.

    [25]

    S. N. Kruzhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.

    [26]

    M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, in Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [27]

    E. Panov, Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients, in Instability in models connected with fluid flows. II, vol. 7 of Int. Math. Ser. (N. Y.), Springer, New York, 2008, 23-84.doi: 10.1007/978-0-387-75219-8_2.

    [28]

    P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [29]

    M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, Journal of Differential Equations, 246 (2009), 408-427, URL http://www.sciencedirect.com/science/article/pii/S002203960800140X.doi: 10.1016/j.jde.2008.03.018.

    [30]

    M. Rosini, The initial-boundary value problem and the constraint, in Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer International Publishing, 2013, 63-91.doi: 10.1007/978-3-319-00155-5_6.

    [31]

    M. Rosini, Numerical applications, in Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer International Publishing, 2013, 167-173.

    [32]

    H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.doi: 10.1016/S0191-2615(00)00050-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(492) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return