• Previous Article
    A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case
  • NHM Home
  • This Issue
  • Next Article
    A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation
June  2016, 11(2): 301-311. doi: 10.3934/nhm.2016.11.301

Logarithmic estimates for continuity equations

1. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa

2. 

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel

3. 

GSSI - Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L'Aquila

Received  April 2015 Revised  August 2015 Published  March 2016

The aim of this short note is twofold. First, we give a sketch of the proof of a recent result proved by the authors in the paper [7] concerning existence and uniqueness of renormalized solutions of continuity equations with unbounded damping coefficient. Second, we show how the ideas in [7] can be used to provide an alternative proof of the result in [6,9,12], where the usual requirement of boundedness of the divergence of the vector field has been relaxed to various settings of exponentially integrable functions.
Citation: Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191. doi: 10.1017/S0308210513000085. Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, $2^{nd}$ edition, (2005). Google Scholar

[4]

L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow,, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29. Google Scholar

[5]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral,, J. Hyperbolic Differ. Equ., 10 (2013), 235. doi: 10.1142/S0219891613500100. Google Scholar

[6]

A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence,, Calc. Var. Partial Differential Equations, 55 (2016). doi: 10.1007/s00526-016-0956-0. Google Scholar

[7]

M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term,, Calc. Var. PDE, 54 (2015), 1831. doi: 10.1007/s00526-015-0845-y. Google Scholar

[8]

G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow,, J. Reine Angew. Math., 616 (2008), 15. doi: 10.1515/CRELLE.2008.016. Google Scholar

[9]

B. Desjardins, A few remarks on ordinary differential equations,, Comm. Partial Diff. Eq., 21 (1996), 1667. doi: 10.1080/03605309608821242. Google Scholar

[10]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[11]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317. Google Scholar

[12]

P. B. Mucha, Transport equation: Extension of classical results for div $b \in BMO$,, J. Differential Equations, 249 (2010), 1871. doi: 10.1016/j.jde.2010.07.015. Google Scholar

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227. doi: 10.1007/s00222-004-0367-2. Google Scholar

[2]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191. doi: 10.1017/S0308210513000085. Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures,, $2^{nd}$ edition, (2005). Google Scholar

[4]

L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow,, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29. Google Scholar

[5]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral,, J. Hyperbolic Differ. Equ., 10 (2013), 235. doi: 10.1142/S0219891613500100. Google Scholar

[6]

A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence,, Calc. Var. Partial Differential Equations, 55 (2016). doi: 10.1007/s00526-016-0956-0. Google Scholar

[7]

M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term,, Calc. Var. PDE, 54 (2015), 1831. doi: 10.1007/s00526-015-0845-y. Google Scholar

[8]

G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow,, J. Reine Angew. Math., 616 (2008), 15. doi: 10.1515/CRELLE.2008.016. Google Scholar

[9]

B. Desjardins, A few remarks on ordinary differential equations,, Comm. Partial Diff. Eq., 21 (1996), 1667. doi: 10.1080/03605309608821242. Google Scholar

[10]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835. Google Scholar

[11]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317. Google Scholar

[12]

P. B. Mucha, Transport equation: Extension of classical results for div $b \in BMO$,, J. Differential Equations, 249 (2010), 1871. doi: 10.1016/j.jde.2010.07.015. Google Scholar

[1]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[2]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[3]

Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163

[4]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[5]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[6]

Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028

[7]

Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501

[8]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[9]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[10]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

[11]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[12]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[13]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[14]

Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445

[15]

Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847

[16]

Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks & Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019

[17]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[18]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic & Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[19]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[20]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]