June  2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313

A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case

1. 

INdAM Unit c/o DII, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy

2. 

Dipartimento di Matematica e Applicazioni Via Roberto Cozzi, 55 - 20125 Milano, Italy

Received  April 2015 Published  March 2016

We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact with the second one. As the sound speed of the first fluid diverges to infinity, we present the proof of rigorous convergence for the fully non--linear compressible to incompressible limit of the coupled dynamics of the two fluids. A linear example is considered in detail, where fully explicit computations are possible.
Citation: Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks & Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313
References:
[1]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1.  doi: 10.1017/S0308210500000767.  Google Scholar

[2]

R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws,, J. Differential Equations, 252 (2012), 2311.  doi: 10.1016/j.jde.2011.08.051.  Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[4]

R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit,, J. Hyperbolic Differ. Equ., (2016).   Google Scholar

[5]

R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case,, Arch. Ration. Mech. Anal., 219 (2016), 701.  doi: 10.1007/s00205-015-0904-8.  Google Scholar

[6]

R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit,, Nonlinear Anal. Real World Appl., 13 (2012), 2195.  doi: 10.1016/j.nonrwa.2012.01.015.  Google Scholar

[7]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481.  doi: 10.1002/cpa.3160340405.  Google Scholar

[8]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629.  doi: 10.1002/cpa.3160350503.  Google Scholar

[9]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61.  doi: 10.1007/PL00004241.  Google Scholar

[10]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49.  doi: 10.1007/BF01210792.  Google Scholar

[11]

S. Schochet, The mathematical theory of low Mach number flows,, M2AN Math. Model. Numer. Anal., 39 (2005), 441.  doi: 10.1051/m2an:2005017.  Google Scholar

[12]

J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations,, Math. Methods Appl. Sci., 34 (2011), 831.  doi: 10.1002/mma.1405.  Google Scholar

show all references

References:
[1]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1.  doi: 10.1017/S0308210500000767.  Google Scholar

[2]

R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws,, J. Differential Equations, 252 (2012), 2311.  doi: 10.1016/j.jde.2011.08.051.  Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[4]

R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit,, J. Hyperbolic Differ. Equ., (2016).   Google Scholar

[5]

R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case,, Arch. Ration. Mech. Anal., 219 (2016), 701.  doi: 10.1007/s00205-015-0904-8.  Google Scholar

[6]

R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit,, Nonlinear Anal. Real World Appl., 13 (2012), 2195.  doi: 10.1016/j.nonrwa.2012.01.015.  Google Scholar

[7]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481.  doi: 10.1002/cpa.3160340405.  Google Scholar

[8]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629.  doi: 10.1002/cpa.3160350503.  Google Scholar

[9]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61.  doi: 10.1007/PL00004241.  Google Scholar

[10]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49.  doi: 10.1007/BF01210792.  Google Scholar

[11]

S. Schochet, The mathematical theory of low Mach number flows,, M2AN Math. Model. Numer. Anal., 39 (2005), 441.  doi: 10.1051/m2an:2005017.  Google Scholar

[12]

J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations,, Math. Methods Appl. Sci., 34 (2011), 831.  doi: 10.1002/mma.1405.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]