June  2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313

A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case

1. 

INdAM Unit c/o DII, Università degli Studi di Brescia, Via Branze 38, 25123 Brescia, Italy

2. 

Dipartimento di Matematica e Applicazioni Via Roberto Cozzi, 55 - 20125 Milano, Italy

Received  April 2015 Published  March 2016

We consider two compressible immiscible fluids in one space dimension and in the isentropic approximation. The first fluid is surrounded and in contact with the second one. As the sound speed of the first fluid diverges to infinity, we present the proof of rigorous convergence for the fully non--linear compressible to incompressible limit of the coupled dynamics of the two fluids. A linear example is considered in detail, where fully explicit computations are possible.
Citation: Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks & Heterogeneous Media, 2016, 11 (2) : 313-330. doi: 10.3934/nhm.2016.11.313
References:
[1]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1. doi: 10.1017/S0308210500000767. Google Scholar

[2]

R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws,, J. Differential Equations, 252 (2012), 2311. doi: 10.1016/j.jde.2011.08.051. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000). Google Scholar

[4]

R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit,, J. Hyperbolic Differ. Equ., (2016). Google Scholar

[5]

R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case,, Arch. Ration. Mech. Anal., 219 (2016), 701. doi: 10.1007/s00205-015-0904-8. Google Scholar

[6]

R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit,, Nonlinear Anal. Real World Appl., 13 (2012), 2195. doi: 10.1016/j.nonrwa.2012.01.015. Google Scholar

[7]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405. Google Scholar

[8]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629. doi: 10.1002/cpa.3160350503. Google Scholar

[9]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61. doi: 10.1007/PL00004241. Google Scholar

[10]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49. doi: 10.1007/BF01210792. Google Scholar

[11]

S. Schochet, The mathematical theory of low Mach number flows,, M2AN Math. Model. Numer. Anal., 39 (2005), 441. doi: 10.1051/m2an:2005017. Google Scholar

[12]

J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations,, Math. Methods Appl. Sci., 34 (2011), 831. doi: 10.1002/mma.1405. Google Scholar

show all references

References:
[1]

D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1. doi: 10.1017/S0308210500000767. Google Scholar

[2]

R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws,, J. Differential Equations, 252 (2012), 2311. doi: 10.1016/j.jde.2011.08.051. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000). Google Scholar

[4]

R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit,, J. Hyperbolic Differ. Equ., (2016). Google Scholar

[5]

R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case,, Arch. Ration. Mech. Anal., 219 (2016), 701. doi: 10.1007/s00205-015-0904-8. Google Scholar

[6]

R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit,, Nonlinear Anal. Real World Appl., 13 (2012), 2195. doi: 10.1016/j.nonrwa.2012.01.015. Google Scholar

[7]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405. Google Scholar

[8]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629. doi: 10.1002/cpa.3160350503. Google Scholar

[9]

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61. doi: 10.1007/PL00004241. Google Scholar

[10]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49. doi: 10.1007/BF01210792. Google Scholar

[11]

S. Schochet, The mathematical theory of low Mach number flows,, M2AN Math. Model. Numer. Anal., 39 (2005), 441. doi: 10.1051/m2an:2005017. Google Scholar

[12]

J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations,, Math. Methods Appl. Sci., 34 (2011), 831. doi: 10.1002/mma.1405. Google Scholar

[1]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[2]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[3]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic & Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[4]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[5]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[6]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[7]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[8]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[9]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[10]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[11]

Luigi Ambrosio. Variational models for incompressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 1-10. doi: 10.3934/dcdsb.2009.11.1

[12]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[13]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[14]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[15]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[16]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[17]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[18]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[19]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[20]

Andrea Natale, François-Xavier Vialard. Embedding Camassa-Holm equations in incompressible Euler. Journal of Geometric Mechanics, 2019, 11 (2) : 205-223. doi: 10.3934/jgm.2019011

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]