March  2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89

Boundary value problem for a phase transition model

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy

Received  April 2015 Revised  September 2015 Published  January 2016

We consider the boundary value problem for the phase transition (PT) model, introduced in [4] and in [7]. By using the wave-front tracking technique, we prove existence of solutions when the initial and boundary conditions have finite total variation.
Citation: Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89
References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[2]

D. Amadori and R. M. Colombo, Continuous dependence for $2\times 2$ conservation laws with boundary,, J. Differential Equations, 138 (1997), 229.  doi: 10.1006/jdeq.1997.3274.  Google Scholar

[3]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[4]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic,, SIAM J. Appl. Math., 71 (2011), 107.  doi: 10.1137/090754467.  Google Scholar

[5]

A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[6]

R. M. Colombo, Hyperbolic phase transitions in traffic flow,, SIAM J. Appl. Math., 63 (2002), 708.  doi: 10.1137/S0036139901393184.  Google Scholar

[7]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652.  doi: 10.1137/090752468.  Google Scholar

[8]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2005).  doi: 10.1007/3-540-29089-3.  Google Scholar

[9]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[10]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models,, J. Hyperbolic Differ. Equ., 10 (2013), 577.  doi: 10.1142/S0219891613500215.  Google Scholar

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[12]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[13]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[14]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior,, Transportation Research Part B, 36 (2002), 275.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

show all references

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[2]

D. Amadori and R. M. Colombo, Continuous dependence for $2\times 2$ conservation laws with boundary,, J. Differential Equations, 138 (1997), 229.  doi: 10.1006/jdeq.1997.3274.  Google Scholar

[3]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[4]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic,, SIAM J. Appl. Math., 71 (2011), 107.  doi: 10.1137/090754467.  Google Scholar

[5]

A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[6]

R. M. Colombo, Hyperbolic phase transitions in traffic flow,, SIAM J. Appl. Math., 63 (2002), 708.  doi: 10.1137/S0036139901393184.  Google Scholar

[7]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652.  doi: 10.1137/090752468.  Google Scholar

[8]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2005).  doi: 10.1007/3-540-29089-3.  Google Scholar

[9]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[10]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models,, J. Hyperbolic Differ. Equ., 10 (2013), 577.  doi: 10.1142/S0219891613500215.  Google Scholar

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[12]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[13]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[14]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior,, Transportation Research Part B, 36 (2002), 275.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[5]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[14]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]