March  2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89

Boundary value problem for a phase transition model

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy

Received  April 2015 Revised  September 2015 Published  January 2016

We consider the boundary value problem for the phase transition (PT) model, introduced in [4] and in [7]. By using the wave-front tracking technique, we prove existence of solutions when the initial and boundary conditions have finite total variation.
Citation: Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89
References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[2]

D. Amadori and R. M. Colombo, Continuous dependence for $2\times 2$ conservation laws with boundary,, J. Differential Equations, 138 (1997), 229.  doi: 10.1006/jdeq.1997.3274.  Google Scholar

[3]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[4]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic,, SIAM J. Appl. Math., 71 (2011), 107.  doi: 10.1137/090754467.  Google Scholar

[5]

A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[6]

R. M. Colombo, Hyperbolic phase transitions in traffic flow,, SIAM J. Appl. Math., 63 (2002), 708.  doi: 10.1137/S0036139901393184.  Google Scholar

[7]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652.  doi: 10.1137/090752468.  Google Scholar

[8]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2005).  doi: 10.1007/3-540-29089-3.  Google Scholar

[9]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[10]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models,, J. Hyperbolic Differ. Equ., 10 (2013), 577.  doi: 10.1142/S0219891613500215.  Google Scholar

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[12]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[13]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[14]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior,, Transportation Research Part B, 36 (2002), 275.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

show all references

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws,, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1.  doi: 10.1007/PL00001406.  Google Scholar

[2]

D. Amadori and R. M. Colombo, Continuous dependence for $2\times 2$ conservation laws with boundary,, J. Differential Equations, 138 (1997), 229.  doi: 10.1006/jdeq.1997.3274.  Google Scholar

[3]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[4]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic,, SIAM J. Appl. Math., 71 (2011), 107.  doi: 10.1137/090754467.  Google Scholar

[5]

A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications,, Oxford University Press, (2000).   Google Scholar

[6]

R. M. Colombo, Hyperbolic phase transitions in traffic flow,, SIAM J. Appl. Math., 63 (2002), 708.  doi: 10.1137/S0036139901393184.  Google Scholar

[7]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652.  doi: 10.1137/090752468.  Google Scholar

[8]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2005).  doi: 10.1007/3-540-29089-3.  Google Scholar

[9]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, J. Differential Equations, 71 (1988), 93.  doi: 10.1016/0022-0396(88)90040-X.  Google Scholar

[10]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models,, J. Hyperbolic Differ. Equ., 10 (2013), 577.  doi: 10.1142/S0219891613500215.  Google Scholar

[11]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences,, Springer-Verlag, (2002).  doi: 10.1007/978-3-642-56139-9.  Google Scholar

[12]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[13]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[14]

H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior,, Transportation Research Part B, 36 (2002), 275.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

[1]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[2]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[3]

João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53

[4]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[5]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[6]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[7]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[8]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[9]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[10]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[11]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[12]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[13]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[14]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[15]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[16]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[17]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[18]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[19]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[20]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]