September  2016, 11(3): 369-393. doi: 10.3934/nhm.2016001

Varying the direction of propagation in reaction-diffusion equations in periodic media

1. 

IMAG, CC051, Université de Montpellier , 34095 Montpellier, France

2. 

IECL, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  February 2015 Revised  February 2016 Published  August 2016

We consider a multidimensional reaction-diffusion equation of either ignition or monostable type, involving periodic heterogeneity, and analyze the dependence of the propagation phenomena on the direction. We prove that the (minimal) speed of the underlying pulsating fronts depends continuously on the direction of propagation, and so does its associated profile provided it is unique up to time shifts. We also prove that the spreading properties [25] are actually uniform with respect to the direction.
Citation: Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001
References:
[1]

M. Alfaro and T. Giletti, Asymptotic analysis of a monostable equation in periodic media,, Tamkang J. Math., 47 (2016), 1.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, (1974), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized transition waves and their properties,, Comm. Pure Appl. Math., 65 (2012), 592.  doi: 10.1002/cpa.21389.  Google Scholar

[6]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating traveling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: 10.1016/j.matpur.2004.10.006.  Google Scholar

[9]

H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits,, SIAM J. Math. Anal., 16 (1985), 1207.  doi: 10.1137/0516088.  Google Scholar

[10]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497.   Google Scholar

[11]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rational Mech. Anal., 65 (1977), 335.   Google Scholar

[12]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[13]

F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decay and monotonicity,, J. Math. Pures Appl., 89 (2008), 355.  doi: 10.1016/j.matpur.2007.12.005.  Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. Eur. Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[15]

W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, Boundary value problems for functional-differential equations, (1995), 187.   Google Scholar

[16]

J. I. Kanel, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, (Russian) Mat. Sb., 59 (1962), 245.   Google Scholar

[17]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Université d'Etat Moscou, (1937), 1.   Google Scholar

[18]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co. Inc., (1996).  doi: 10.1142/3302.  Google Scholar

[19]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Appl., 92 (2009), 232.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[20]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1021.  doi: 10.1016/j.anihpc.2009.02.003.  Google Scholar

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Verlag, (2007).   Google Scholar

[22]

L. Rossi, The Freidlin-Gärtner formula for reaction term of any type,, , ().   Google Scholar

[23]

N. Shigesada and K. Kawasaki, Biological Invasion: Theory and Practise,, Oxford University Press, (1997).   Google Scholar

[24]

A. Volpert, V. Volpert and V. Volpert, Travelling Wave Solutions of Parabolic Systems,, Translations of Mathematical Monographs, (1994).   Google Scholar

[25]

H. Weinberger, On spreading speed and travelling waves for growth and migration,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[26]

J. Xin, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity,, J. Dynam. Differential Equations, 3 (1991), 541.  doi: 10.1007/BF01049099.  Google Scholar

[27]

J. Xin, Existence of planar flame fronts in convective-diffusive periodic media,, Arch. Ration. Mech. Anal., 121 (1992), 205.  doi: 10.1007/BF00410613.  Google Scholar

[28]

J. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media,, J. Statist. Phys., 73 (1993), 893.  doi: 10.1007/BF01052815.  Google Scholar

[29]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[30]

A. Zlatoš, Generalized traveling waves in disordered media: Existence, uniqueness, and stability,, Arch. Ration. Mech. Anal., 208 (2013), 447.  doi: 10.1007/s00205-012-0600-x.  Google Scholar

show all references

References:
[1]

M. Alfaro and T. Giletti, Asymptotic analysis of a monostable equation in periodic media,, Tamkang J. Math., 47 (2016), 1.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, (1974), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[5]

H. Berestycki and F. Hamel, Generalized transition waves and their properties,, Comm. Pure Appl. Math., 65 (2012), 592.  doi: 10.1002/cpa.21389.  Google Scholar

[6]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Funct. Anal., 255 (2008), 2146.  doi: 10.1016/j.jfa.2008.06.030.  Google Scholar

[7]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[8]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating traveling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: 10.1016/j.matpur.2004.10.006.  Google Scholar

[9]

H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits,, SIAM J. Math. Anal., 16 (1985), 1207.  doi: 10.1137/0516088.  Google Scholar

[10]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497.   Google Scholar

[11]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rational Mech. Anal., 65 (1977), 335.   Google Scholar

[12]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[13]

F. Hamel, Qualitative properties of monostable pulsating fronts: Exponential decay and monotonicity,, J. Math. Pures Appl., 89 (2008), 355.  doi: 10.1016/j.matpur.2007.12.005.  Google Scholar

[14]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. Eur. Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[15]

W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, Boundary value problems for functional-differential equations, (1995), 187.   Google Scholar

[16]

J. I. Kanel, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, (Russian) Mat. Sb., 59 (1962), 245.   Google Scholar

[17]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Université d'Etat Moscou, (1937), 1.   Google Scholar

[18]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co. Inc., (1996).  doi: 10.1142/3302.  Google Scholar

[19]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Appl., 92 (2009), 232.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[20]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1021.  doi: 10.1016/j.anihpc.2009.02.003.  Google Scholar

[21]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Verlag, (2007).   Google Scholar

[22]

L. Rossi, The Freidlin-Gärtner formula for reaction term of any type,, , ().   Google Scholar

[23]

N. Shigesada and K. Kawasaki, Biological Invasion: Theory and Practise,, Oxford University Press, (1997).   Google Scholar

[24]

A. Volpert, V. Volpert and V. Volpert, Travelling Wave Solutions of Parabolic Systems,, Translations of Mathematical Monographs, (1994).   Google Scholar

[25]

H. Weinberger, On spreading speed and travelling waves for growth and migration,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[26]

J. Xin, Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity,, J. Dynam. Differential Equations, 3 (1991), 541.  doi: 10.1007/BF01049099.  Google Scholar

[27]

J. Xin, Existence of planar flame fronts in convective-diffusive periodic media,, Arch. Ration. Mech. Anal., 121 (1992), 205.  doi: 10.1007/BF00410613.  Google Scholar

[28]

J. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media,, J. Statist. Phys., 73 (1993), 893.  doi: 10.1007/BF01052815.  Google Scholar

[29]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[30]

A. Zlatoš, Generalized traveling waves in disordered media: Existence, uniqueness, and stability,, Arch. Ration. Mech. Anal., 208 (2013), 447.  doi: 10.1007/s00205-012-0600-x.  Google Scholar

[1]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[6]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[11]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[14]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]