September  2016, 11(3): 395-413. doi: 10.3934/nhm.2016002

On the micro-to-macro limit for first-order traffic flow models on networks

1. 

Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini, 19 – 00185 Rome

2. 

Dipartimento di Matematica "G. Castelnuovo", Sapienza, Università di Roma, Rome, Italy

Received  May 2015 Revised  August 2015 Published  August 2016

Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions. In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [4,5].
Citation: Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002
References:
[1]

A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2000).   Google Scholar

[4]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379.  doi: 10.3934/dcdss.2014.7.379.  Google Scholar

[5]

M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study,, Netw. Heterog. Media, 9 (2014), 519.  doi: 10.3934/nhm.2014.9.519.  Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217.  doi: 10.4171/RSMUP/131-13.  Google Scholar

[8]

G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique,, Master thesis, (2011).   Google Scholar

[9]

E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks,, Netw. Heterog. Media, 10 (2015), 857.  doi: 10.3934/nhm.2015.10.857.  Google Scholar

[10]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit,, Arch. Rational Mech. Anal., 217 (2015), 831.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[11]

M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM,, In: J. Barceló (Ed.), 145 (2010), 63.  doi: 10.1007/978-1-4419-6142-6_2.  Google Scholar

[12]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks,, Math. Models Methods Appl. Sci., 25 (2015), 423.  doi: 10.1142/S0218202515400023.  Google Scholar

[13]

L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449.  doi: 10.3934/dcdss.2014.7.449.  Google Scholar

[14]

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow,, preprint, (2014).   Google Scholar

[15]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915.  doi: 10.3934/dcds.2012.32.1915.  Google Scholar

[16]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261.  doi: 10.4310/CMS.2005.v3.n3.a1.  Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).   Google Scholar

[18]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143.  doi: 10.1007/978-1-4614-6243-9_6.  Google Scholar

[19]

J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle,, SIAM J. Appl. Math., 62 (2001), 729.  doi: 10.1137/S0036139900378657.  Google Scholar

[20]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977).   Google Scholar

[21]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[22]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Comm. Math. Sci., 6 (2008), 171.  doi: 10.4310/CMS.2008.v6.n1.a8.  Google Scholar

[23]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM J. Sci. Comput., 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[24]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813.  doi: 10.3934/nhm.2009.4.813.  Google Scholar

[25]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[26]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[27]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model,, SIAM J. Appl. Math., 68 (2007), 413.  doi: 10.1137/060678415.  Google Scholar

[28]

L. A. Pipes, An operational analysis of traffic dynamics,, J. Appl. Phys., 24 (1953), 274.  doi: 10.1063/1.1721265.  Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[30]

E. Rossi, A justification of a LWR model based on a follow the leader description,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579.  doi: 10.3934/dcdss.2014.7.579.  Google Scholar

[31]

J. Shen and X. Jin, Detailed traffic animation for urban road networks,, Graphical Models, 74 (2012), 265.  doi: 10.1016/j.gmod.2012.04.002.  Google Scholar

show all references

References:
[1]

A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2000).   Google Scholar

[4]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379.  doi: 10.3934/dcdss.2014.7.379.  Google Scholar

[5]

M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study,, Netw. Heterog. Media, 9 (2014), 519.  doi: 10.3934/nhm.2014.9.519.  Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217.  doi: 10.4171/RSMUP/131-13.  Google Scholar

[8]

G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique,, Master thesis, (2011).   Google Scholar

[9]

E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks,, Netw. Heterog. Media, 10 (2015), 857.  doi: 10.3934/nhm.2015.10.857.  Google Scholar

[10]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit,, Arch. Rational Mech. Anal., 217 (2015), 831.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[11]

M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM,, In: J. Barceló (Ed.), 145 (2010), 63.  doi: 10.1007/978-1-4419-6142-6_2.  Google Scholar

[12]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks,, Math. Models Methods Appl. Sci., 25 (2015), 423.  doi: 10.1142/S0218202515400023.  Google Scholar

[13]

L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449.  doi: 10.3934/dcdss.2014.7.449.  Google Scholar

[14]

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow,, preprint, (2014).   Google Scholar

[15]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915.  doi: 10.3934/dcds.2012.32.1915.  Google Scholar

[16]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261.  doi: 10.4310/CMS.2005.v3.n3.a1.  Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).   Google Scholar

[18]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143.  doi: 10.1007/978-1-4614-6243-9_6.  Google Scholar

[19]

J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle,, SIAM J. Appl. Math., 62 (2001), 729.  doi: 10.1137/S0036139900378657.  Google Scholar

[20]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977).   Google Scholar

[21]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[22]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Comm. Math. Sci., 6 (2008), 171.  doi: 10.4310/CMS.2008.v6.n1.a8.  Google Scholar

[23]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM J. Sci. Comput., 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[24]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813.  doi: 10.3934/nhm.2009.4.813.  Google Scholar

[25]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[26]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[27]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model,, SIAM J. Appl. Math., 68 (2007), 413.  doi: 10.1137/060678415.  Google Scholar

[28]

L. A. Pipes, An operational analysis of traffic dynamics,, J. Appl. Phys., 24 (1953), 274.  doi: 10.1063/1.1721265.  Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[30]

E. Rossi, A justification of a LWR model based on a follow the leader description,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579.  doi: 10.3934/dcdss.2014.7.579.  Google Scholar

[31]

J. Shen and X. Jin, Detailed traffic animation for urban road networks,, Graphical Models, 74 (2012), 265.  doi: 10.1016/j.gmod.2012.04.002.  Google Scholar

[1]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[2]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[3]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[4]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[5]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[6]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[11]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[12]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[13]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[16]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[17]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[18]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[19]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[20]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]