September  2016, 11(3): 395-413. doi: 10.3934/nhm.2016002

On the micro-to-macro limit for first-order traffic flow models on networks

1. 

Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini, 19 – 00185 Rome

2. 

Dipartimento di Matematica "G. Castelnuovo", Sapienza, Università di Roma, Rome, Italy

Received  May 2015 Revised  August 2015 Published  August 2016

Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions. In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [4,5].
Citation: Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002
References:
[1]

A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259. doi: 10.1137/S0036139900380955. Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409. doi: 10.1137/090746677. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2000). Google Scholar

[4]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379. doi: 10.3934/dcdss.2014.7.379. Google Scholar

[5]

M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study,, Netw. Heterog. Media, 9 (2014), 519. doi: 10.3934/nhm.2014.9.519. Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217. doi: 10.4171/RSMUP/131-13. Google Scholar

[8]

G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique,, Master thesis, (2011). Google Scholar

[9]

E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks,, Netw. Heterog. Media, 10 (2015), 857. doi: 10.3934/nhm.2015.10.857. Google Scholar

[10]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit,, Arch. Rational Mech. Anal., 217 (2015), 831. doi: 10.1007/s00205-015-0843-4. Google Scholar

[11]

M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM,, In: J. Barceló (Ed.), 145 (2010), 63. doi: 10.1007/978-1-4419-6142-6_2. Google Scholar

[12]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks,, Math. Models Methods Appl. Sci., 25 (2015), 423. doi: 10.1142/S0218202515400023. Google Scholar

[13]

L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449. doi: 10.3934/dcdss.2014.7.449. Google Scholar

[14]

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow,, preprint, (2014). Google Scholar

[15]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[16]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261. doi: 10.4310/CMS.2005.v3.n3.a1. Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[18]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[19]

J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle,, SIAM J. Appl. Math., 62 (2001), 729. doi: 10.1137/S0036139900378657. Google Scholar

[20]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977). Google Scholar

[21]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067. doi: 10.1103/RevModPhys.73.1067. Google Scholar

[22]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Comm. Math. Sci., 6 (2008), 171. doi: 10.4310/CMS.2008.v6.n1.a8. Google Scholar

[23]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM J. Sci. Comput., 25 (2003), 1066. doi: 10.1137/S106482750241459X. Google Scholar

[24]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[25]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[26]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[27]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model,, SIAM J. Appl. Math., 68 (2007), 413. doi: 10.1137/060678415. Google Scholar

[28]

L. A. Pipes, An operational analysis of traffic dynamics,, J. Appl. Phys., 24 (1953), 274. doi: 10.1063/1.1721265. Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[30]

E. Rossi, A justification of a LWR model based on a follow the leader description,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579. doi: 10.3934/dcdss.2014.7.579. Google Scholar

[31]

J. Shen and X. Jin, Detailed traffic animation for urban road networks,, Graphical Models, 74 (2012), 265. doi: 10.1016/j.gmod.2012.04.002. Google Scholar

show all references

References:
[1]

A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum flow traffic models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259. doi: 10.1137/S0036139900380955. Google Scholar

[2]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Rev., 53 (2011), 409. doi: 10.1137/090746677. Google Scholar

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, (2000). Google Scholar

[4]

G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379. doi: 10.3934/dcdss.2014.7.379. Google Scholar

[5]

M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study,, Netw. Heterog. Media, 9 (2014), 519. doi: 10.3934/nhm.2014.9.519. Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, Rend. Sem. Mat. Univ. Padova, 131 (2014), 217. doi: 10.4171/RSMUP/131-13. Google Scholar

[8]

G. Costeseque, Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique,, Master thesis, (2011). Google Scholar

[9]

E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks,, Netw. Heterog. Media, 10 (2015), 857. doi: 10.3934/nhm.2015.10.857. Google Scholar

[10]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit,, Arch. Rational Mech. Anal., 217 (2015), 831. doi: 10.1007/s00205-015-0843-4. Google Scholar

[11]

M. Fellendorf and P. Vortisch, Microscopic traffic flow simulator VISSIM,, In: J. Barceló (Ed.), 145 (2010), 63. doi: 10.1007/978-1-4419-6142-6_2. Google Scholar

[12]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks,, Math. Models Methods Appl. Sci., 25 (2015), 423. doi: 10.1142/S0218202515400023. Google Scholar

[13]

L. Fermo and A. Tosin, Fundamental diagrams for kinetic equations of traffic flow,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 449. doi: 10.3934/dcdss.2014.7.449. Google Scholar

[14]

N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow,, preprint, (2014). Google Scholar

[15]

M. Garavello and P. Goatin, The Cauchy problem at a node with buffer,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915. doi: 10.3934/dcds.2012.32.1915. Google Scholar

[16]

M. Garavello and B. Piccoli, Source-destination flow on a road network,, Comm. Math. Sci., 3 (2005), 261. doi: 10.4310/CMS.2005.v3.n3.a1. Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006). Google Scholar

[18]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, Advances in Dynamic Network Modeling in Complex Transportation Systems, 2 (2013), 143. doi: 10.1007/978-1-4614-6243-9_6. Google Scholar

[19]

J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascle,, SIAM J. Appl. Math., 62 (2001), 729. doi: 10.1137/S0036139900378657. Google Scholar

[20]

R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow,, Prentice-Hall, (1977). Google Scholar

[21]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067. doi: 10.1103/RevModPhys.73.1067. Google Scholar

[22]

M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks,, Comm. Math. Sci., 6 (2008), 171. doi: 10.4310/CMS.2008.v6.n1.a8. Google Scholar

[23]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM J. Sci. Comput., 25 (2003), 1066. doi: 10.1137/S106482750241459X. Google Scholar

[24]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. doi: 10.3934/nhm.2009.4.813. Google Scholar

[25]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289. Google Scholar

[26]

M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads,, Proc. Roy. Soc. Lond. A, 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[27]

S. Moutari and M. Rascle, A hybrid Lagrangian model based on the Aw-Rascle traffic flow model,, SIAM J. Appl. Math., 68 (2007), 413. doi: 10.1137/060678415. Google Scholar

[28]

L. A. Pipes, An operational analysis of traffic dynamics,, J. Appl. Phys., 24 (1953), 274. doi: 10.1063/1.1721265. Google Scholar

[29]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[30]

E. Rossi, A justification of a LWR model based on a follow the leader description,, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 579. doi: 10.3934/dcdss.2014.7.579. Google Scholar

[31]

J. Shen and X. Jin, Detailed traffic animation for urban road networks,, Graphical Models, 74 (2012), 265. doi: 10.1016/j.gmod.2012.04.002. Google Scholar

[1]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[2]

Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579

[3]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[4]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks & Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[5]

Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks & Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579

[6]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[7]

Mauro Garavello. The LWR traffic model at a junction with multibuffers. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 463-482. doi: 10.3934/dcdss.2014.7.463

[8]

Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031

[9]

Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009

[10]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[11]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[12]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[13]

Florent Berthelin, Damien Broizat. A model for the evolution of traffic jams in multi-lane. Kinetic & Related Models, 2012, 5 (4) : 697-728. doi: 10.3934/krm.2012.5.697

[14]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[15]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[16]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[17]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[18]

Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch. Two-way multi-lane traffic model for pedestrians in corridors. Networks & Heterogeneous Media, 2011, 6 (3) : 351-381. doi: 10.3934/nhm.2011.6.351

[19]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[20]

Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]