September  2016, 11(3): 415-445. doi: 10.3934/nhm.2016003

On optimization of a highly re-entrant production system

1. 

Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA)

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk

3. 

Università degli Studi di Salerno, Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Via Giovanni Paolo II, 132, 84084 Fisciano (SA)

Received  March 2015 Revised  July 2015 Published  August 2016

We discuss the optimal control problem stated as the minimization in the $L^2$-sense of the mismatch between the actual out-flux and a demand forecast for a hyperbolic conservation law that models a highly re-entrant production system. The output of the factory is described as a function of the work in progress and the position of the switch dispatch point (SDP) where we separate the beginning of the factory employing a push policy from the end of the factory, which uses a quasi-pull policy. The main question we discuss in this paper is about the optimal choice of the input in-flux, push and quasi-pull constituents, and the position of SDP.
Citation: Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On optimization of a highly re-entrant production system. Networks & Heterogeneous Media, 2016, 11 (3) : 415-445. doi: 10.3934/nhm.2016003
References:
[1]

A. Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Exact controllability of scalar conser- vation laws with strict convex flux,, Math. Control Relat. Fields, 4 (2014), 401.  doi: 10.3934/mcrf.2014.4.401.  Google Scholar

[2]

F. Ancona and G. M. Coclite, On the attainable set for Temple class systems with boundary controls,, SIAM J. Control Optim., 43 (2005), 2166.  doi: 10.1137/S0363012902407776.  Google Scholar

[3]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[4]

D. Armbruster, D. Marthaler, C. Ringhofer, K. Kempf and T. C. Jo, A continuum model for a re-entrant factory,, Oper. Res., 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[5]

D. Armbruster, M. Herty, X. Wang and L. Zhao, Integrating release and dispatch policies in production models,, Networks and Heterogeneous Media, 10 (2015), 511.  doi: 10.3934/nhm.2015.10.511.  Google Scholar

[6]

D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for reentrant supply chains,, Multiscale Model. Simul., 3 (2005), 782.  doi: 10.1137/030601636.  Google Scholar

[7]

A. Bressan and G. M. Coclite, On the boundary control of systems of conservation laws,, SIAM J. Control Optim., 41 (2002), 607.  doi: 10.1137/S0363012901392529.  Google Scholar

[8]

P. Baiti, P. LeFloch and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems,, J. Differential Equations, 172 (2001), 59.  doi: 10.1006/jdeq.2000.3869.  Google Scholar

[9]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[10]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for n systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000).  doi: 10.1090/memo/0694.  Google Scholar

[11]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661.  doi: 10.3934/nhm.2007.2.661.  Google Scholar

[12]

R. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM: COCV, 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[13]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).   Google Scholar

[14]

J.-M. Coron, O. Glass and Z. Wang, Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed,, SIAM J. Control Optim., 48 (2009), 3105.  doi: 10.1137/090749268.  Google Scholar

[15]

J.-M. Coron and Z. Wang, Output feedback stabilization for a scalar conservation law with a nonlocal velocity,, SIAM J. Math. Analysis., 45 (2013), 2646.  doi: 10.1137/120902203.  Google Scholar

[16]

J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity,, J. Differential Equations, 252 (2012), 181.  doi: 10.1016/j.jde.2011.08.042.  Google Scholar

[17]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modelling a highly re-entrant manufacturing system,, Discrete and Continuous Dynamical Systems, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[18]

C. D'Apice, S. Goettlich, H. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[19]

C. D'Apice, P. I. Kogut and R. Manzo, On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms,, Journal of Control Science and Engineering, 2010 (2010).  doi: 10.1155/2010/982369.  Google Scholar

[20]

C. D'Apice, P. I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains,, Networks and Heterogeneous Media, 9 (2014), 501.  doi: 10.3934/nhm.2014.9.501.  Google Scholar

[21]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chains,, Networks and Heterogeneous Media, 1 (2006), 379.  doi: 10.3934/nhm.2006.1.379.  Google Scholar

[22]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.  doi: 10.1090/S0033-569X-09-01129-1.  Google Scholar

[23]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374.  doi: 10.1016/j.jmaa.2009.07.058.  Google Scholar

[24]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flows for a PDE-ODE model of supply chains,, Communications in Mathematical Sciences, 10 (2012), 1225.  doi: 10.4310/CMS.2012.v10.n4.a10.  Google Scholar

[25]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.  doi: 10.1137/120889721.  Google Scholar

[26]

P. Degond, S. Gottlich, M. Herty and A. Klar, A network model for supply chains with multiple policies,, Multiscale Model. Simul., 6 (2007), 820.  doi: 10.1137/060670316.  Google Scholar

[27]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[28]

T. Horsin, On the controllability of the Burgers equation,, ESAIM Control Optim. Calc. Var., 3 (1998), 83.  doi: 10.1051/cocv:1998103.  Google Scholar

[29]

P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, Far East Journal of Applied Mathematics, 46 (2010), 85.   Google Scholar

[30]

P. I. Kogut and R. Manzo, On vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381.  doi: 10.1007/s10883-013-9184-5.  Google Scholar

[31]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Control, 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[32]

T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS Ser. Appl. Math. 3, (2010).   Google Scholar

[33]

V. Perrollaz, Exact controllability of scalar conservation laws with an additional control and in the context of entropy solutions,, SIAM J. Control Optim., 50 (2012), 2025.  doi: 10.1137/110833129.  Google Scholar

[34]

P. Shang and Z. Wang, Analysis and control of a scalar conservation law modelling a highly re-entrant manufacturing system,, J. Differential Equations, 250 (2011), 949.  doi: 10.1016/j.jde.2010.09.003.  Google Scholar

show all references

References:
[1]

A. Adimurthi, S. S. Ghoshal and G. D. Veerappa Gowda, Exact controllability of scalar conser- vation laws with strict convex flux,, Math. Control Relat. Fields, 4 (2014), 401.  doi: 10.3934/mcrf.2014.4.401.  Google Scholar

[2]

F. Ancona and G. M. Coclite, On the attainable set for Temple class systems with boundary controls,, SIAM J. Control Optim., 43 (2005), 2166.  doi: 10.1137/S0363012902407776.  Google Scholar

[3]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM J. Appl. Math., 66 (2006), 896.  doi: 10.1137/040604625.  Google Scholar

[4]

D. Armbruster, D. Marthaler, C. Ringhofer, K. Kempf and T. C. Jo, A continuum model for a re-entrant factory,, Oper. Res., 54 (2006), 933.  doi: 10.1287/opre.1060.0321.  Google Scholar

[5]

D. Armbruster, M. Herty, X. Wang and L. Zhao, Integrating release and dispatch policies in production models,, Networks and Heterogeneous Media, 10 (2015), 511.  doi: 10.3934/nhm.2015.10.511.  Google Scholar

[6]

D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for reentrant supply chains,, Multiscale Model. Simul., 3 (2005), 782.  doi: 10.1137/030601636.  Google Scholar

[7]

A. Bressan and G. M. Coclite, On the boundary control of systems of conservation laws,, SIAM J. Control Optim., 41 (2002), 607.  doi: 10.1137/S0363012901392529.  Google Scholar

[8]

P. Baiti, P. LeFloch and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems,, J. Differential Equations, 172 (2001), 59.  doi: 10.1006/jdeq.2000.3869.  Google Scholar

[9]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).   Google Scholar

[10]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for n systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000).  doi: 10.1090/memo/0694.  Google Scholar

[11]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661.  doi: 10.3934/nhm.2007.2.661.  Google Scholar

[12]

R. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow,, ESAIM: COCV, 17 (2011), 353.  doi: 10.1051/cocv/2010007.  Google Scholar

[13]

J.-M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs, (2007).   Google Scholar

[14]

J.-M. Coron, O. Glass and Z. Wang, Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed,, SIAM J. Control Optim., 48 (2009), 3105.  doi: 10.1137/090749268.  Google Scholar

[15]

J.-M. Coron and Z. Wang, Output feedback stabilization for a scalar conservation law with a nonlocal velocity,, SIAM J. Math. Analysis., 45 (2013), 2646.  doi: 10.1137/120902203.  Google Scholar

[16]

J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity,, J. Differential Equations, 252 (2012), 181.  doi: 10.1016/j.jde.2011.08.042.  Google Scholar

[17]

J.-M. Coron, M. Kawski and Z. Wang, Analysis of a conservation law modelling a highly re-entrant manufacturing system,, Discrete and Continuous Dynamical Systems, 14 (2010), 1337.  doi: 10.3934/dcdsb.2010.14.1337.  Google Scholar

[18]

C. D'Apice, S. Goettlich, H. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[19]

C. D'Apice, P. I. Kogut and R. Manzo, On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms,, Journal of Control Science and Engineering, 2010 (2010).  doi: 10.1155/2010/982369.  Google Scholar

[20]

C. D'Apice, P. I. Kogut and R. Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains,, Networks and Heterogeneous Media, 9 (2014), 501.  doi: 10.3934/nhm.2014.9.501.  Google Scholar

[21]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chains,, Networks and Heterogeneous Media, 1 (2006), 379.  doi: 10.3934/nhm.2006.1.379.  Google Scholar

[22]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.  doi: 10.1090/S0033-569X-09-01129-1.  Google Scholar

[23]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374.  doi: 10.1016/j.jmaa.2009.07.058.  Google Scholar

[24]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flows for a PDE-ODE model of supply chains,, Communications in Mathematical Sciences, 10 (2012), 1225.  doi: 10.4310/CMS.2012.v10.n4.a10.  Google Scholar

[25]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634.  doi: 10.1137/120889721.  Google Scholar

[26]

P. Degond, S. Gottlich, M. Herty and A. Klar, A network model for supply chains with multiple policies,, Multiscale Model. Simul., 6 (2007), 820.  doi: 10.1137/060670316.  Google Scholar

[27]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[28]

T. Horsin, On the controllability of the Burgers equation,, ESAIM Control Optim. Calc. Var., 3 (1998), 83.  doi: 10.1051/cocv:1998103.  Google Scholar

[29]

P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, Far East Journal of Applied Mathematics, 46 (2010), 85.   Google Scholar

[30]

P. I. Kogut and R. Manzo, On vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381.  doi: 10.1007/s10883-013-9184-5.  Google Scholar

[31]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automat. Control, 55 (2010), 2511.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[32]

T. Li, Controllability and Observability for Quasilinear Hyperbolic Systems,, AIMS Ser. Appl. Math. 3, (2010).   Google Scholar

[33]

V. Perrollaz, Exact controllability of scalar conservation laws with an additional control and in the context of entropy solutions,, SIAM J. Control Optim., 50 (2012), 2025.  doi: 10.1137/110833129.  Google Scholar

[34]

P. Shang and Z. Wang, Analysis and control of a scalar conservation law modelling a highly re-entrant manufacturing system,, J. Differential Equations, 250 (2011), 949.  doi: 10.1016/j.jde.2010.09.003.  Google Scholar

[1]

Jean-Michel Coron, Matthias Kawski, Zhiqiang Wang. Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1337-1359. doi: 10.3934/dcdsb.2010.14.1337

[2]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[3]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[4]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[5]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[6]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[7]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[8]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[9]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks & Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

[10]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[11]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[12]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[13]

João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53

[14]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[15]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[16]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[17]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[18]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[19]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[20]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]