December  2016, 11(4): 545-562. doi: 10.3934/nhm.2016009

Homogenization of a thermal problem with flux jump

1. 

Institut Élie Cartan de Lorraine, CNRS, UMR 7502, Université de Lorraine, Metz, 57045, France

2. 

University of Bucharest, Faculty of Physics, Bucharest-Magurele, P.O. Box MG-11, Romania

Received  December 2015 Published  October 2016

The goal of this paper is to analyze, through homogenization techniques, the effective thermal transfer in a periodic composite material formed by two constituents, separated by an imperfect interface where both the temperature and the flux exhibit jumps. Following the hypotheses on the flux jump, two different homogenized problems are obtained. These problems capture in various ways the influence of the jumps: in the homogenized coefficients, in the right-hand side of the homogenized problem, and in the correctors.
Citation: Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009
References:
[1]

M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Model. Methods Appl. Sci., 14 (2004), 1261-1295. doi: 10.1142/S0218202504003623.

[2]

M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equations, 26 (2013), 885-912.

[3]

J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media, Wiley, 2010. doi: 10.1002/9780470612033.

[4]

J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Int. J. of Heat and Mass Transfer, 37 (1994), 2885-2892. doi: 10.1016/0017-9310(94)90342-5.

[5]

A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik: Mathematics, 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576.

[6]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., 33 (2001), 309-323. doi: 10.1016/S0167-6636(01)00055-2.

[7]

D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme, Math. Models Methods Appl. Sci., 23 (2013), 839-872. doi: 10.1142/S0218202512500625.

[8]

R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump, work in progress.

[9]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942.

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148.

[11]

D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Math., 63 (2006), 467-496.

[12]

D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209-235.

[13]

I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains, Asymptot. Anal., 92 (2015), 1-43.

[14]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect, J. Math. Pures Appl., 87 (2007), 119-143. doi: 10.1016/j.matpur.2006.11.004.

[15]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380. doi: 10.1007/s00030-015-0325-2.

[16]

P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci. (N. Y.), 176 (2011), 891-927. doi: 10.1007/s10958-011-0443-2.

[17]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 (2004), 247-273. doi: 10.1142/S0219530504000345.

[18]

P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method, Boundary Value Problems, 2013 (2013), 14pp.

[19]

H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media, Z. Angew. Math. Phys., 53 (2002), 1052-1059. doi: 10.1007/PL00013849.

[20]

H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method, Asymptot. Anal., 89 (2014), 111-122.

[21]

H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147-160.

[22]

H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem, Romanian Reports in Physics, 68 (2016), 979-989.

[23]

K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate, Applicable Analysis, (2015), 1-22. doi: 10.1080/00036811.2015.1105962.

[24]

M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells, SIAM J. Appl. Math., 76 (2016), 1819-1843. doi: 10.1137/15M1018484.

[25]

Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509-2537. doi: 10.1016/S0022-5096(02)00050-9.

[26]

H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances, Appl. Anal., 75 (2000), 403-424. doi: 10.1080/00036810008840857.

[27]

E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach, Combustion Theory and Modelling, 17 (2013), 185-223. doi: 10.1080/13647830.2012.734860.

[28]

E. C. Jose, Homogenization of a parabolic problem with an imperfect interface, Rev. Roum. Math. Pures Appl., 54 (2009), 189-222.

[29]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000.

[30]

K. H. Le Nguyen, Homogenization of heat transfer process in composite materials, JEPE, 1 (2015), 175-188.

[31]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63.

[32]

D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463-473.

[33]

D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), Theta Series in Advanced Mathematics, 3 (2005), 225-230.

[34]

D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media, Bulletin Scientifique, Mathématiques et Informatique, 10 (2004), 99-106.

[35]

C. Timofte, Multiscale analysis of diffusion processes in composite media, Computers and Mathematics with Applications, 66 (2013), 1573-1580. doi: 10.1016/j.camwa.2012.12.003.

[36]

C. Timofte, Multiscale modeling of heat transfer in composite materials, Romanian Journal of Physics, 58 (2013), 1418-1427.

[37]

C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures, Cent. Eur. J. Phys., 8 (2010), 555-561. doi: 10.2478/s11534-009-0141-6.

show all references

References:
[1]

M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Model. Methods Appl. Sci., 14 (2004), 1261-1295. doi: 10.1142/S0218202504003623.

[2]

M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equations, 26 (2013), 885-912.

[3]

J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media, Wiley, 2010. doi: 10.1002/9780470612033.

[4]

J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Int. J. of Heat and Mass Transfer, 37 (1994), 2885-2892. doi: 10.1016/0017-9310(94)90342-5.

[5]

A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik: Mathematics, 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576.

[6]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., 33 (2001), 309-323. doi: 10.1016/S0167-6636(01)00055-2.

[7]

D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme, Math. Models Methods Appl. Sci., 23 (2013), 839-872. doi: 10.1142/S0218202512500625.

[8]

R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump, work in progress.

[9]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942.

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148.

[11]

D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Math., 63 (2006), 467-496.

[12]

D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209-235.

[13]

I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains, Asymptot. Anal., 92 (2015), 1-43.

[14]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect, J. Math. Pures Appl., 87 (2007), 119-143. doi: 10.1016/j.matpur.2006.11.004.

[15]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380. doi: 10.1007/s00030-015-0325-2.

[16]

P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci. (N. Y.), 176 (2011), 891-927. doi: 10.1007/s10958-011-0443-2.

[17]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 (2004), 247-273. doi: 10.1142/S0219530504000345.

[18]

P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method, Boundary Value Problems, 2013 (2013), 14pp.

[19]

H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media, Z. Angew. Math. Phys., 53 (2002), 1052-1059. doi: 10.1007/PL00013849.

[20]

H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method, Asymptot. Anal., 89 (2014), 111-122.

[21]

H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147-160.

[22]

H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem, Romanian Reports in Physics, 68 (2016), 979-989.

[23]

K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate, Applicable Analysis, (2015), 1-22. doi: 10.1080/00036811.2015.1105962.

[24]

M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells, SIAM J. Appl. Math., 76 (2016), 1819-1843. doi: 10.1137/15M1018484.

[25]

Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509-2537. doi: 10.1016/S0022-5096(02)00050-9.

[26]

H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances, Appl. Anal., 75 (2000), 403-424. doi: 10.1080/00036810008840857.

[27]

E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach, Combustion Theory and Modelling, 17 (2013), 185-223. doi: 10.1080/13647830.2012.734860.

[28]

E. C. Jose, Homogenization of a parabolic problem with an imperfect interface, Rev. Roum. Math. Pures Appl., 54 (2009), 189-222.

[29]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000.

[30]

K. H. Le Nguyen, Homogenization of heat transfer process in composite materials, JEPE, 1 (2015), 175-188.

[31]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63.

[32]

D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463-473.

[33]

D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), Theta Series in Advanced Mathematics, 3 (2005), 225-230.

[34]

D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media, Bulletin Scientifique, Mathématiques et Informatique, 10 (2004), 99-106.

[35]

C. Timofte, Multiscale analysis of diffusion processes in composite media, Computers and Mathematics with Applications, 66 (2013), 1573-1580. doi: 10.1016/j.camwa.2012.12.003.

[36]

C. Timofte, Multiscale modeling of heat transfer in composite materials, Romanian Journal of Physics, 58 (2013), 1418-1427.

[37]

C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures, Cent. Eur. J. Phys., 8 (2010), 555-561. doi: 10.2478/s11534-009-0141-6.

[1]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure and Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[2]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations and Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016

[5]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1755-1782. doi: 10.3934/cpaa.2021040

[6]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations and Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[7]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[8]

Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543

[9]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[10]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[11]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[12]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[13]

Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097

[14]

Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755

[15]

Michel Lenczner. Homogenization of linear spatially periodic electronic circuits. Networks and Heterogeneous Media, 2006, 1 (3) : 467-494. doi: 10.3934/nhm.2006.1.467

[16]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[17]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[18]

Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022014

[19]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[20]

Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]