December  2016, 11(4): 545-562. doi: 10.3934/nhm.2016009

Homogenization of a thermal problem with flux jump

1. 

Institut Élie Cartan de Lorraine, CNRS, UMR 7502, Université de Lorraine, Metz, 57045, France

2. 

University of Bucharest, Faculty of Physics, Bucharest-Magurele, P.O. Box MG-11, Romania

Received  December 2015 Published  October 2016

The goal of this paper is to analyze, through homogenization techniques, the effective thermal transfer in a periodic composite material formed by two constituents, separated by an imperfect interface where both the temperature and the flux exhibit jumps. Following the hypotheses on the flux jump, two different homogenized problems are obtained. These problems capture in various ways the influence of the jumps: in the homogenized coefficients, in the right-hand side of the homogenized problem, and in the correctors.
Citation: Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks & Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009
References:
[1]

M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues,, Math. Model. Methods Appl. Sci., 14 (2004), 1261.  doi: 10.1142/S0218202504003623.  Google Scholar

[2]

M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case,, Differ. Integral Equations, 26 (2013), 885.   Google Scholar

[3]

J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media,, Wiley, (2010).  doi: 10.1002/9780470612033.  Google Scholar

[4]

J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier,, Int. J. of Heat and Mass Transfer, 37 (1994), 2885.  doi: 10.1016/0017-9310(94)90342-5.  Google Scholar

[5]

A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition,, Sbornik: Mathematics, 192 (2001), 933.  doi: 10.1070/SM2001v192n07ABEH000576.  Google Scholar

[6]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mech. Mater., 33 (2001), 309.  doi: 10.1016/S0167-6636(01)00055-2.  Google Scholar

[7]

D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme,, Math. Models Methods Appl. Sci., 23 (2013), 839.  doi: 10.1142/S0218202512500625.  Google Scholar

[8]

R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump,, work in progress., ().   Google Scholar

[9]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2012), 718.  doi: 10.1137/100817942.  Google Scholar

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585.  doi: 10.1137/080713148.  Google Scholar

[11]

D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains,, Portugaliae Math., 63 (2006), 467.   Google Scholar

[12]

D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,, Asymptot. Anal., 53 (2007), 209.   Google Scholar

[13]

I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains,, Asymptot. Anal., 92 (2015), 1.   Google Scholar

[14]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect,, J. Math. Pures Appl., 87 (2007), 119.  doi: 10.1016/j.matpur.2006.11.004.  Google Scholar

[15]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance,, Nonlinear Differ. Equ. Appl., 22 (2015), 1345.  doi: 10.1007/s00030-015-0325-2.  Google Scholar

[16]

P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci. (N. Y.), 176 (2011), 891.  doi: 10.1007/s10958-011-0443-2.  Google Scholar

[17]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247.  doi: 10.1142/S0219530504000345.  Google Scholar

[18]

P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method,, Boundary Value Problems, 2013 (2013).   Google Scholar

[19]

H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media,, Z. Angew. Math. Phys., 53 (2002), 1052.  doi: 10.1007/PL00013849.  Google Scholar

[20]

H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method,, Asymptot. Anal., 89 (2014), 111.   Google Scholar

[21]

H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface,, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147.   Google Scholar

[22]

H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem,, Romanian Reports in Physics, 68 (2016), 979.   Google Scholar

[23]

K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate,, Applicable Analysis, (2015), 1.  doi: 10.1080/00036811.2015.1105962.  Google Scholar

[24]

M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells,, SIAM J. Appl. Math., 76 (2016), 1819.  doi: 10.1137/15M1018484.  Google Scholar

[25]

Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites,, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509.  doi: 10.1016/S0022-5096(02)00050-9.  Google Scholar

[26]

H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances,, Appl. Anal., 75 (2000), 403.  doi: 10.1080/00036810008840857.  Google Scholar

[27]

E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach,, Combustion Theory and Modelling, 17 (2013), 185.  doi: 10.1080/13647830.2012.734860.  Google Scholar

[28]

E. C. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Roum. Math. Pures Appl., 54 (2009), 189.   Google Scholar

[29]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT-Press, (2000).   Google Scholar

[30]

K. H. Le Nguyen, Homogenization of heat transfer process in composite materials,, JEPE, 1 (2015), 175.   Google Scholar

[31]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43.   Google Scholar

[32]

D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers,, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463.   Google Scholar

[33]

D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface,, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), 3 (2005), 225.   Google Scholar

[34]

D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media,, Bulletin Scientifique, 10 (2004), 99.   Google Scholar

[35]

C. Timofte, Multiscale analysis of diffusion processes in composite media,, Computers and Mathematics with Applications, 66 (2013), 1573.  doi: 10.1016/j.camwa.2012.12.003.  Google Scholar

[36]

C. Timofte, Multiscale modeling of heat transfer in composite materials,, Romanian Journal of Physics, 58 (2013), 1418.   Google Scholar

[37]

C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures,, Cent. Eur. J. Phys., 8 (2010), 555.  doi: 10.2478/s11534-009-0141-6.  Google Scholar

show all references

References:
[1]

M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues,, Math. Model. Methods Appl. Sci., 14 (2004), 1261.  doi: 10.1142/S0218202504003623.  Google Scholar

[2]

M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case,, Differ. Integral Equations, 26 (2013), 885.   Google Scholar

[3]

J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media,, Wiley, (2010).  doi: 10.1002/9780470612033.  Google Scholar

[4]

J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier,, Int. J. of Heat and Mass Transfer, 37 (1994), 2885.  doi: 10.1016/0017-9310(94)90342-5.  Google Scholar

[5]

A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition,, Sbornik: Mathematics, 192 (2001), 933.  doi: 10.1070/SM2001v192n07ABEH000576.  Google Scholar

[6]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mech. Mater., 33 (2001), 309.  doi: 10.1016/S0167-6636(01)00055-2.  Google Scholar

[7]

D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme,, Math. Models Methods Appl. Sci., 23 (2013), 839.  doi: 10.1142/S0218202512500625.  Google Scholar

[8]

R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump,, work in progress., ().   Google Scholar

[9]

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2012), 718.  doi: 10.1137/100817942.  Google Scholar

[10]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585.  doi: 10.1137/080713148.  Google Scholar

[11]

D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains,, Portugaliae Math., 63 (2006), 467.   Google Scholar

[12]

D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,, Asymptot. Anal., 53 (2007), 209.   Google Scholar

[13]

I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains,, Asymptot. Anal., 92 (2015), 1.   Google Scholar

[14]

P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect,, J. Math. Pures Appl., 87 (2007), 119.  doi: 10.1016/j.matpur.2006.11.004.  Google Scholar

[15]

P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance,, Nonlinear Differ. Equ. Appl., 22 (2015), 1345.  doi: 10.1007/s00030-015-0325-2.  Google Scholar

[16]

P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci. (N. Y.), 176 (2011), 891.  doi: 10.1007/s10958-011-0443-2.  Google Scholar

[17]

P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247.  doi: 10.1142/S0219530504000345.  Google Scholar

[18]

P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method,, Boundary Value Problems, 2013 (2013).   Google Scholar

[19]

H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media,, Z. Angew. Math. Phys., 53 (2002), 1052.  doi: 10.1007/PL00013849.  Google Scholar

[20]

H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method,, Asymptot. Anal., 89 (2014), 111.   Google Scholar

[21]

H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface,, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147.   Google Scholar

[22]

H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem,, Romanian Reports in Physics, 68 (2016), 979.   Google Scholar

[23]

K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate,, Applicable Analysis, (2015), 1.  doi: 10.1080/00036811.2015.1105962.  Google Scholar

[24]

M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells,, SIAM J. Appl. Math., 76 (2016), 1819.  doi: 10.1137/15M1018484.  Google Scholar

[25]

Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites,, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509.  doi: 10.1016/S0022-5096(02)00050-9.  Google Scholar

[26]

H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances,, Appl. Anal., 75 (2000), 403.  doi: 10.1080/00036810008840857.  Google Scholar

[27]

E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach,, Combustion Theory and Modelling, 17 (2013), 185.  doi: 10.1080/13647830.2012.734860.  Google Scholar

[28]

E. C. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Roum. Math. Pures Appl., 54 (2009), 189.   Google Scholar

[29]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT-Press, (2000).   Google Scholar

[30]

K. H. Le Nguyen, Homogenization of heat transfer process in composite materials,, JEPE, 1 (2015), 175.   Google Scholar

[31]

S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43.   Google Scholar

[32]

D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers,, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463.   Google Scholar

[33]

D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface,, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), 3 (2005), 225.   Google Scholar

[34]

D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media,, Bulletin Scientifique, 10 (2004), 99.   Google Scholar

[35]

C. Timofte, Multiscale analysis of diffusion processes in composite media,, Computers and Mathematics with Applications, 66 (2013), 1573.  doi: 10.1016/j.camwa.2012.12.003.  Google Scholar

[36]

C. Timofte, Multiscale modeling of heat transfer in composite materials,, Romanian Journal of Physics, 58 (2013), 1418.   Google Scholar

[37]

C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures,, Cent. Eur. J. Phys., 8 (2010), 555.  doi: 10.2478/s11534-009-0141-6.  Google Scholar

[1]

Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197

[2]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[5]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[6]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[7]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[8]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[9]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[11]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[12]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[13]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[14]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[15]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[16]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[17]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[18]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[19]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[20]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]