-
Previous Article
Stability of non-autonomous difference equations with applications to transport and wave propagation on networks
- NHM Home
- This Issue
- Next Article
Homogenization of a thermal problem with flux jump
1. | Institut Élie Cartan de Lorraine, CNRS, UMR 7502, Université de Lorraine, Metz, 57045, France |
2. | University of Bucharest, Faculty of Physics, Bucharest-Magurele, P.O. Box MG-11, Romania |
References:
[1] |
M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues,, Math. Model. Methods Appl. Sci., 14 (2004), 1261.
doi: 10.1142/S0218202504003623. |
[2] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case,, Differ. Integral Equations, 26 (2013), 885.
|
[3] |
J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media,, Wiley, (2010).
doi: 10.1002/9780470612033. |
[4] |
J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier,, Int. J. of Heat and Mass Transfer, 37 (1994), 2885.
doi: 10.1016/0017-9310(94)90342-5. |
[5] |
A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition,, Sbornik: Mathematics, 192 (2001), 933.
doi: 10.1070/SM2001v192n07ABEH000576. |
[6] |
Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mech. Mater., 33 (2001), 309.
doi: 10.1016/S0167-6636(01)00055-2. |
[7] |
D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme,, Math. Models Methods Appl. Sci., 23 (2013), 839.
doi: 10.1142/S0218202512500625. |
[8] |
R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump,, work in progress., (). Google Scholar |
[9] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2012), 718.
doi: 10.1137/100817942. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585.
doi: 10.1137/080713148. |
[11] |
D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains,, Portugaliae Math., 63 (2006), 467.
|
[12] |
D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,, Asymptot. Anal., 53 (2007), 209.
|
[13] |
I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains,, Asymptot. Anal., 92 (2015), 1.
|
[14] |
P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect,, J. Math. Pures Appl., 87 (2007), 119.
doi: 10.1016/j.matpur.2006.11.004. |
[15] |
P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance,, Nonlinear Differ. Equ. Appl., 22 (2015), 1345.
doi: 10.1007/s00030-015-0325-2. |
[16] |
P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci. (N. Y.), 176 (2011), 891.
doi: 10.1007/s10958-011-0443-2. |
[17] |
P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247.
doi: 10.1142/S0219530504000345. |
[18] |
P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method,, Boundary Value Problems, 2013 (2013).
|
[19] |
H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media,, Z. Angew. Math. Phys., 53 (2002), 1052.
doi: 10.1007/PL00013849. |
[20] |
H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method,, Asymptot. Anal., 89 (2014), 111.
|
[21] |
H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface,, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147.
|
[22] |
H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem,, Romanian Reports in Physics, 68 (2016), 979. Google Scholar |
[23] |
K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate,, Applicable Analysis, (2015), 1.
doi: 10.1080/00036811.2015.1105962. |
[24] |
M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells,, SIAM J. Appl. Math., 76 (2016), 1819.
doi: 10.1137/15M1018484. |
[25] |
Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites,, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509.
doi: 10.1016/S0022-5096(02)00050-9. |
[26] |
H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances,, Appl. Anal., 75 (2000), 403.
doi: 10.1080/00036810008840857. |
[27] |
E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach,, Combustion Theory and Modelling, 17 (2013), 185.
doi: 10.1080/13647830.2012.734860. |
[28] |
E. C. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Roum. Math. Pures Appl., 54 (2009), 189.
|
[29] |
A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT-Press, (2000). Google Scholar |
[30] |
K. H. Le Nguyen, Homogenization of heat transfer process in composite materials,, JEPE, 1 (2015), 175.
|
[31] |
S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43.
|
[32] |
D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers,, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463.
|
[33] |
D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface,, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), 3 (2005), 225.
|
[34] |
D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media,, Bulletin Scientifique, 10 (2004), 99. Google Scholar |
[35] |
C. Timofte, Multiscale analysis of diffusion processes in composite media,, Computers and Mathematics with Applications, 66 (2013), 1573.
doi: 10.1016/j.camwa.2012.12.003. |
[36] |
C. Timofte, Multiscale modeling of heat transfer in composite materials,, Romanian Journal of Physics, 58 (2013), 1418. Google Scholar |
[37] |
C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures,, Cent. Eur. J. Phys., 8 (2010), 555.
doi: 10.2478/s11534-009-0141-6. |
show all references
References:
[1] |
M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues,, Math. Model. Methods Appl. Sci., 14 (2004), 1261.
doi: 10.1142/S0218202504003623. |
[2] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case,, Differ. Integral Equations, 26 (2013), 885.
|
[3] |
J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media,, Wiley, (2010).
doi: 10.1002/9780470612033. |
[4] |
J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier,, Int. J. of Heat and Mass Transfer, 37 (1994), 2885.
doi: 10.1016/0017-9310(94)90342-5. |
[5] |
A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition,, Sbornik: Mathematics, 192 (2001), 933.
doi: 10.1070/SM2001v192n07ABEH000576. |
[6] |
Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mech. Mater., 33 (2001), 309.
doi: 10.1016/S0167-6636(01)00055-2. |
[7] |
D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme,, Math. Models Methods Appl. Sci., 23 (2013), 839.
doi: 10.1142/S0218202512500625. |
[8] |
R. Bunoiu and C. Timofte, On the homogenization of a two-permeability problem with flux jump,, work in progress., (). Google Scholar |
[9] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes,, SIAM J. Math. Anal., 44 (2012), 718.
doi: 10.1137/100817942. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization,, SIAM J. Math. Anal., 40 (2008), 1585.
doi: 10.1137/080713148. |
[11] |
D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains,, Portugaliae Math., 63 (2006), 467.
|
[12] |
D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,, Asymptot. Anal., 53 (2007), 209.
|
[13] |
I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains,, Asymptot. Anal., 92 (2015), 1.
|
[14] |
P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect,, J. Math. Pures Appl., 87 (2007), 119.
doi: 10.1016/j.matpur.2006.11.004. |
[15] |
P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance,, Nonlinear Differ. Equ. Appl., 22 (2015), 1345.
doi: 10.1007/s00030-015-0325-2. |
[16] |
P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems,, J. Math. Sci. (N. Y.), 176 (2011), 891.
doi: 10.1007/s10958-011-0443-2. |
[17] |
P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance,, Analysis and Applications, 2 (2004), 247.
doi: 10.1142/S0219530504000345. |
[18] |
P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method,, Boundary Value Problems, 2013 (2013).
|
[19] |
H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media,, Z. Angew. Math. Phys., 53 (2002), 1052.
doi: 10.1007/PL00013849. |
[20] |
H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method,, Asymptot. Anal., 89 (2014), 111.
|
[21] |
H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface,, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147.
|
[22] |
H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem,, Romanian Reports in Physics, 68 (2016), 979. Google Scholar |
[23] |
K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate,, Applicable Analysis, (2015), 1.
doi: 10.1080/00036811.2015.1105962. |
[24] |
M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells,, SIAM J. Appl. Math., 76 (2016), 1819.
doi: 10.1137/15M1018484. |
[25] |
Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites,, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509.
doi: 10.1016/S0022-5096(02)00050-9. |
[26] |
H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances,, Appl. Anal., 75 (2000), 403.
doi: 10.1080/00036810008840857. |
[27] |
E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach,, Combustion Theory and Modelling, 17 (2013), 185.
doi: 10.1080/13647830.2012.734860. |
[28] |
E. C. Jose, Homogenization of a parabolic problem with an imperfect interface,, Rev. Roum. Math. Pures Appl., 54 (2009), 189.
|
[29] |
A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT-Press, (2000). Google Scholar |
[30] |
K. H. Le Nguyen, Homogenization of heat transfer process in composite materials,, JEPE, 1 (2015), 175.
|
[31] |
S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier,, Adv. Math. Sci. Appl., 13 (2003), 43.
|
[32] |
D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers,, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463.
|
[33] |
D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface,, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), 3 (2005), 225.
|
[34] |
D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media,, Bulletin Scientifique, 10 (2004), 99. Google Scholar |
[35] |
C. Timofte, Multiscale analysis of diffusion processes in composite media,, Computers and Mathematics with Applications, 66 (2013), 1573.
doi: 10.1016/j.camwa.2012.12.003. |
[36] |
C. Timofte, Multiscale modeling of heat transfer in composite materials,, Romanian Journal of Physics, 58 (2013), 1418. Google Scholar |
[37] |
C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures,, Cent. Eur. J. Phys., 8 (2010), 555.
doi: 10.2478/s11534-009-0141-6. |
[1] |
Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197 |
[2] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[3] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[4] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[5] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[6] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[7] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[8] |
Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 |
[9] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[10] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[11] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[12] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[13] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[14] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[15] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[16] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[17] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[18] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[19] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[20] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]