Citation: |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.doi: 10.1137/0523084. |
[2] |
G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.doi: 10.1017/S0308210500022757. |
[3] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients, Electron. J. Differential Equations, (1998), 21 pp. |
[4] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and J. S. Souza, Homogenization and uniform stabilization for a nonlinear hyperbolic equation in domains with holes of small capacity, Electron. J. Differential Equations, (2004), 19 pp. |
[5] |
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, The Clarendon Press, Oxford University Press, New York, 1999. |
[6] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.doi: 10.1017/S0308210500018631. |
[7] |
L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245-265.doi: 10.1017/S0308210500032121. |
[8] |
L. Flodén, A. Holmbom, M. Olsson and J. Persson, Very weak multiscale convergence, Appl. Math. Lett., 23 (2010), 1170-1173.doi: 10.1016/j.aml.2010.05.005. |
[9] |
L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Detection of scales of heterogeneity and parabolic homogenization applying very weak multiscale convergence, Ann. Funct. Anal., 2 (2011), 84-99.doi: 10.15352/afa/1399900264. |
[10] |
L. Flodén, A. Holmbom, M. Olsson Lindberg and J. Persson, Homogenization of parabolic equations with an arbitrary number of scales in both space and time, J. Appl. Math., 2014 (2014), Art. ID 101685, 16 pp.doi: 10.1155/2014/101685. |
[11] |
L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q., 14 (2006), 149-183. |
[12] |
L. Flodén and M. Olsson, Homogenization of some parabolic operators with several time scales, Appl. Math., 52 (2007), 431-446.doi: 10.1007/s10492-007-0025-2. |
[13] |
M. Hairer, E. Pardoux and A. Piatnitski, Random homogenisation of a highly oscillatory singular potential, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 571-605.doi: 10.1007/s40072-013-0018-y. |
[14] |
A. Holmbom, Homogenization of parabolic equations. An alternative approach and some corrector-type results, Appl. Math., 42 (1997), 321-343.doi: 10.1023/A:1023049608047. |
[15] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[16] |
D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86. |
[17] |
A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations, (2001), 19 pp. |
[18] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.doi: 10.1137/0520043. |
[19] |
G. Nguetseng, Deterministic homogenization of a semilinear elliptic partial differential equation of order $2m$, Math. Rep. (Bucur.), 8 (2006), 167-195. |
[20] |
G. Nguetseng, H. Nnang and N. Svanstedt, $G$-convergence and homogenization of monotone damped hyperbolic equations, Banach J. Math. Anal., 4 (2010), 100-115.doi: 10.15352/bjma/1272374674. |
[21] |
G. Nguetseng, H. Nnang and N. Svanstedt, Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity, J. Funct. Spaces Appl., 8 (2010), 17-54.doi: 10.1155/2010/291670. |
[22] |
G. Nguetseng, H. Nnang and N. Svanstedt, Deterministic homogenization of quasilinear damped hyperbolic equations, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 1823-1850.doi: 10.1016/S0252-9602(11)60364-0. |
[23] |
G. Nguetseng and J. L. Woukeng, Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differential Equations, (2004), 23 pp. |
[24] |
G. Nguetseng and J. L. Woukeng, $\Sigma $-convergence of nonlinear parabolic operators, Nonlinear Anal., 66 (2007), 968-1004.doi: 10.1016/j.na.2005.12.035. |
[25] |
H. Nnang, Deterministic homogenization of weakly damped nonlinear hyperbolic-parabolic equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 539-574.doi: 10.1007/s00030-011-0142-1. |
[26] |
L. S. Pankratov and I. D. Chueshov, Averaging of attractors of nonlinear hyperbolic equations with asymptotically degenerate coefficients, Mat. Sb., 190 (1999), 99-126.doi: 10.1070/SM1999v190n09ABEH000427. |
[27] |
E. Pardoux and A. Piatnitski, Homogenization of a singular random one-dimensional PDE with time-varying coefficients, Ann. Probab., 40 (2012), 1316-1356.doi: 10.1214/11-AOP650. |
[28] |
J. Persson, Selected Topics in Homogenization, Mid Sweden University Doctoral Thesis 127, 2012. (URL: http://www.diva-portal.org/smash/get/diva2:527223/FULLTEXT01.pdf.) |
[29] |
J. Persson, Homogenization of monotone parabolic problems with several temporal scales, Appl. Math., 57 (2012), 191-214.doi: 10.1007/s10492-012-0013-z. |
[30] |
N. Svanstedt, Convergence of quasi-linear hyperbolic equations, J. Hyperbolic Differ. Equ., 4 (2007), 655-677.doi: 10.1142/S0219891607001306. |
[31] |
N. Svanstedt and J. L. Woukeng, Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms, Appl. Anal., 92 (2013), 1357-1378.doi: 10.1080/00036811.2012.678334. |
[32] |
M. I. Vishik and B. Fidler, Quantative averaging of global attractors of hyperbolic wave equations with rapidly oscillating coefficients, Uspekhi Mat. Nauk., 57 (2002), 75-94.doi: 10.1070/RM2002v057n04ABEH000534. |
[33] |
J. L. Woukeng and D. Dongo, Multiscale homogenization of nonlinear hyperbolic equations with several time scales, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 843-856.doi: 10.1016/S0252-9602(11)60281-6. |
[34] |
E. Zeidler, Nonlinear Functional Analysis and its Applications IIA. Linear Monotone Operators, Springer Verlag, New York, 1990.doi: 10.1007/978-1-4612-0985-0. |