December  2016, 11(4): 655-692. doi: 10.3934/nhm.2016013

Decay rates for $1-d$ heat-wave planar networks

1. 

Department of Mathematics, Tianjin University, Tianjin 300072

2. 

Deusto Tech, University of Deusto, 48007 Bilbao, Basque Country, Spain

Received  December 2015 Revised  May 2016 Published  October 2016

The large time decay rates of a transmission problem coupling heat and wave equations on a planar network is discussed.
    When all edges evolve according to the heat equation, the uniform exponential decay holds. By the contrary, we show the lack of uniform stability, based on a Geometric Optics high frequency asymptotic expansion, whenever the network involves at least one wave equation.
    The (slow) decay rate of this system is further discussed for star-shaped networks. When only one wave equation is present in the network, by the frequency domain approach together with multipliers, we derive a sharp polynomial decay rate. When the network involves more than one wave equation, a weakened observability estimate is obtained, based on which, polynomial and logarithmic decay rates are deduced for smooth initial conditions under certain irrationality conditions on the lengths of the strings entering in the network. These decay rates are intrinsically determined by the wave equations entering in the system and are independent on the heat equations.
Citation: Zhong-Jie Han, Enrique Zuazua. Decay rates for $1-d$ heat-wave planar networks. Networks & Heterogeneous Media, 2016, 11 (4) : 655-692. doi: 10.3934/nhm.2016013
References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential and Integral Equations, 17 (2004), 1395. Google Scholar

[2]

K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings,, Applications of Mathematics, 52 (2007), 327. doi: 10.1007/s10492-007-0018-1. Google Scholar

[3]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force,, SIAM J. Control Optim., 39 (2000), 1160. doi: 10.1137/S0363012998349315. Google Scholar

[4]

M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation,, SIAM J. Appl. Math., 74 (2014), 345. doi: 10.1137/130923233. Google Scholar

[5]

V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations,, in Partial Differential Equations V, 34 (1999), 91. doi: 10.1007/978-3-642-58423-7_3. Google Scholar

[6]

J. von Below, A characteristic equation associated to an eigenvalue problem on $C^2$-networks,, Linear Algebra Appl., 71 (1985), 309. doi: 10.1016/0024-3795(85)90258-7. Google Scholar

[7]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differ. Equations, 72 (1988), 316. doi: 10.1016/0022-0396(88)90158-1. Google Scholar

[8]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455. doi: 10.1007/s00208-009-0439-0. Google Scholar

[9]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures,, Mathématiques et Applications 50, (2006). doi: 10.1007/3-540-37726-3. Google Scholar

[10]

C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity,, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95. doi: 10.1016/S0045-7825(97)00216-8. Google Scholar

[11]

Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings,, Acta Appl. Math., 110 (2010), 511. doi: 10.1007/s10440-009-9459-8. Google Scholar

[12]

Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks,, Networks and Heterogeneous Media, 5 (2010), 315. doi: 10.3934/nhm.2010.5.315. Google Scholar

[13]

Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs,, Netw. Heterog. Media, 6 (2011), 297. doi: 10.3934/nhm.2011.6.297. Google Scholar

[14]

J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations,, Z. Angew. Math. Phys., 64 (2013), 1145. doi: 10.1007/s00033-012-0274-0. Google Scholar

[15]

J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures,, in Systems & Control: Foundations & Applications, (1994). doi: 10.1007/978-1-4612-0273-8. Google Scholar

[16]

Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[17]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, CRC Research Notes in Mathematics, (1999). Google Scholar

[18]

R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,, Int. J. Numer. Meth. Fluids, 46 (2004), 533. Google Scholar

[19]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37. Google Scholar

[20]

D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams,, Journal of Mathematical Analysis and Applications, 337 (2008), 174. doi: 10.1016/j.jmaa.2007.03.080. Google Scholar

[21]

F. Ali Mehmeti, A characterization of a generalized $C^\infty$-notion on nets,, Integr. Equat. Oper. Th, 9 (1986), 753. doi: 10.1007/BF01202515. Google Scholar

[22]

H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods,, Wiley, (1995). Google Scholar

[23]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425. Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl., 84 (2005), 407. doi: 10.1016/j.matpur.2004.09.006. Google Scholar

[26]

M. E. Taylor, Pseudodifferential Operators,, Princeton Mathematical Series, (1981). Google Scholar

[27]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Contr. Optim, 48 (2009), 2771. doi: 10.1137/080733590. Google Scholar

[28]

G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings,, SIAM J. Control Optim., 47 (2008), 1762. doi: 10.1137/060649367. Google Scholar

[29]

X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differ. Equations, 204 (2004), 380. doi: 10.1016/j.jde.2004.02.004. Google Scholar

[30]

X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system,, C. R. Acad. Sci. Paris, 336 (2003), 823. doi: 10.1016/S1631-073X(03)00204-8. Google Scholar

[31]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. An., 184 (2007), 49. doi: 10.1007/s00205-006-0020-x. Google Scholar

[32]

E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type,, in Optimal Control and Partial Differential Equations, (2001), 198. Google Scholar

show all references

References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential and Integral Equations, 17 (2004), 1395. Google Scholar

[2]

K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings,, Applications of Mathematics, 52 (2007), 327. doi: 10.1007/s10492-007-0018-1. Google Scholar

[3]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force,, SIAM J. Control Optim., 39 (2000), 1160. doi: 10.1137/S0363012998349315. Google Scholar

[4]

M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation,, SIAM J. Appl. Math., 74 (2014), 345. doi: 10.1137/130923233. Google Scholar

[5]

V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations,, in Partial Differential Equations V, 34 (1999), 91. doi: 10.1007/978-3-642-58423-7_3. Google Scholar

[6]

J. von Below, A characteristic equation associated to an eigenvalue problem on $C^2$-networks,, Linear Algebra Appl., 71 (1985), 309. doi: 10.1016/0024-3795(85)90258-7. Google Scholar

[7]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differ. Equations, 72 (1988), 316. doi: 10.1016/0022-0396(88)90158-1. Google Scholar

[8]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455. doi: 10.1007/s00208-009-0439-0. Google Scholar

[9]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures,, Mathématiques et Applications 50, (2006). doi: 10.1007/3-540-37726-3. Google Scholar

[10]

C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity,, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95. doi: 10.1016/S0045-7825(97)00216-8. Google Scholar

[11]

Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings,, Acta Appl. Math., 110 (2010), 511. doi: 10.1007/s10440-009-9459-8. Google Scholar

[12]

Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks,, Networks and Heterogeneous Media, 5 (2010), 315. doi: 10.3934/nhm.2010.5.315. Google Scholar

[13]

Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs,, Netw. Heterog. Media, 6 (2011), 297. doi: 10.3934/nhm.2011.6.297. Google Scholar

[14]

J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations,, Z. Angew. Math. Phys., 64 (2013), 1145. doi: 10.1007/s00033-012-0274-0. Google Scholar

[15]

J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures,, in Systems & Control: Foundations & Applications, (1994). doi: 10.1007/978-1-4612-0273-8. Google Scholar

[16]

Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630. doi: 10.1007/s00033-004-3073-4. Google Scholar

[17]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, CRC Research Notes in Mathematics, (1999). Google Scholar

[18]

R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,, Int. J. Numer. Meth. Fluids, 46 (2004), 533. Google Scholar

[19]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37. Google Scholar

[20]

D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams,, Journal of Mathematical Analysis and Applications, 337 (2008), 174. doi: 10.1016/j.jmaa.2007.03.080. Google Scholar

[21]

F. Ali Mehmeti, A characterization of a generalized $C^\infty$-notion on nets,, Integr. Equat. Oper. Th, 9 (1986), 753. doi: 10.1007/BF01202515. Google Scholar

[22]

H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods,, Wiley, (1995). Google Scholar

[23]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425. Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl., 84 (2005), 407. doi: 10.1016/j.matpur.2004.09.006. Google Scholar

[26]

M. E. Taylor, Pseudodifferential Operators,, Princeton Mathematical Series, (1981). Google Scholar

[27]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Contr. Optim, 48 (2009), 2771. doi: 10.1137/080733590. Google Scholar

[28]

G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings,, SIAM J. Control Optim., 47 (2008), 1762. doi: 10.1137/060649367. Google Scholar

[29]

X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differ. Equations, 204 (2004), 380. doi: 10.1016/j.jde.2004.02.004. Google Scholar

[30]

X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system,, C. R. Acad. Sci. Paris, 336 (2003), 823. doi: 10.1016/S1631-073X(03)00204-8. Google Scholar

[31]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. An., 184 (2007), 49. doi: 10.1007/s00205-006-0020-x. Google Scholar

[32]

E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type,, in Optimal Control and Partial Differential Equations, (2001), 198. Google Scholar

[1]

Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks & Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020

[2]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[3]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[4]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[5]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[6]

Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049

[7]

Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347

[8]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[9]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[10]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[11]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[12]

Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487

[13]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[14]

Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371

[15]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[16]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[17]

Jong Yeoul Park, Sun Hye Park. On uniform decay for the coupled Euler-Bernoulli viscoelastic system with boundary damping. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 425-436. doi: 10.3934/dcds.2005.12.425

[18]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[19]

Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393

[20]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]