December  2016, 11(4): 655-692. doi: 10.3934/nhm.2016013

Decay rates for $1-d$ heat-wave planar networks

1. 

Department of Mathematics, Tianjin University, Tianjin 300072

2. 

Deusto Tech, University of Deusto, 48007 Bilbao, Basque Country, Spain

Received  December 2015 Revised  May 2016 Published  October 2016

The large time decay rates of a transmission problem coupling heat and wave equations on a planar network is discussed.
    When all edges evolve according to the heat equation, the uniform exponential decay holds. By the contrary, we show the lack of uniform stability, based on a Geometric Optics high frequency asymptotic expansion, whenever the network involves at least one wave equation.
    The (slow) decay rate of this system is further discussed for star-shaped networks. When only one wave equation is present in the network, by the frequency domain approach together with multipliers, we derive a sharp polynomial decay rate. When the network involves more than one wave equation, a weakened observability estimate is obtained, based on which, polynomial and logarithmic decay rates are deduced for smooth initial conditions under certain irrationality conditions on the lengths of the strings entering in the network. These decay rates are intrinsically determined by the wave equations entering in the system and are independent on the heat equations.
Citation: Zhong-Jie Han, Enrique Zuazua. Decay rates for $1-d$ heat-wave planar networks. Networks & Heterogeneous Media, 2016, 11 (4) : 655-692. doi: 10.3934/nhm.2016013
References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential and Integral Equations, 17 (2004), 1395.   Google Scholar

[2]

K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings,, Applications of Mathematics, 52 (2007), 327.  doi: 10.1007/s10492-007-0018-1.  Google Scholar

[3]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force,, SIAM J. Control Optim., 39 (2000), 1160.  doi: 10.1137/S0363012998349315.  Google Scholar

[4]

M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation,, SIAM J. Appl. Math., 74 (2014), 345.  doi: 10.1137/130923233.  Google Scholar

[5]

V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations,, in Partial Differential Equations V, 34 (1999), 91.  doi: 10.1007/978-3-642-58423-7_3.  Google Scholar

[6]

J. von Below, A characteristic equation associated to an eigenvalue problem on $C^2$-networks,, Linear Algebra Appl., 71 (1985), 309.  doi: 10.1016/0024-3795(85)90258-7.  Google Scholar

[7]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differ. Equations, 72 (1988), 316.  doi: 10.1016/0022-0396(88)90158-1.  Google Scholar

[8]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[9]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures,, Mathématiques et Applications 50, (2006).  doi: 10.1007/3-540-37726-3.  Google Scholar

[10]

C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity,, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95.  doi: 10.1016/S0045-7825(97)00216-8.  Google Scholar

[11]

Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings,, Acta Appl. Math., 110 (2010), 511.  doi: 10.1007/s10440-009-9459-8.  Google Scholar

[12]

Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks,, Networks and Heterogeneous Media, 5 (2010), 315.  doi: 10.3934/nhm.2010.5.315.  Google Scholar

[13]

Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs,, Netw. Heterog. Media, 6 (2011), 297.  doi: 10.3934/nhm.2011.6.297.  Google Scholar

[14]

J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations,, Z. Angew. Math. Phys., 64 (2013), 1145.  doi: 10.1007/s00033-012-0274-0.  Google Scholar

[15]

J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures,, in Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[16]

Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[17]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, CRC Research Notes in Mathematics, (1999).   Google Scholar

[18]

R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,, Int. J. Numer. Meth. Fluids, 46 (2004), 533.   Google Scholar

[19]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[20]

D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams,, Journal of Mathematical Analysis and Applications, 337 (2008), 174.  doi: 10.1016/j.jmaa.2007.03.080.  Google Scholar

[21]

F. Ali Mehmeti, A characterization of a generalized $C^\infty$-notion on nets,, Integr. Equat. Oper. Th, 9 (1986), 753.  doi: 10.1007/BF01202515.  Google Scholar

[22]

H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods,, Wiley, (1995).   Google Scholar

[23]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl., 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[26]

M. E. Taylor, Pseudodifferential Operators,, Princeton Mathematical Series, (1981).   Google Scholar

[27]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Contr. Optim, 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[28]

G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings,, SIAM J. Control Optim., 47 (2008), 1762.  doi: 10.1137/060649367.  Google Scholar

[29]

X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differ. Equations, 204 (2004), 380.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar

[30]

X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system,, C. R. Acad. Sci. Paris, 336 (2003), 823.  doi: 10.1016/S1631-073X(03)00204-8.  Google Scholar

[31]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. An., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[32]

E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type,, in Optimal Control and Partial Differential Equations, (2001), 198.   Google Scholar

show all references

References:
[1]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings,, Differential and Integral Equations, 17 (2004), 1395.   Google Scholar

[2]

K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings,, Applications of Mathematics, 52 (2007), 327.  doi: 10.1007/s10492-007-0018-1.  Google Scholar

[3]

K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force,, SIAM J. Control Optim., 39 (2000), 1160.  doi: 10.1137/S0363012998349315.  Google Scholar

[4]

M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation,, SIAM J. Appl. Math., 74 (2014), 345.  doi: 10.1137/130923233.  Google Scholar

[5]

V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations,, in Partial Differential Equations V, 34 (1999), 91.  doi: 10.1007/978-3-642-58423-7_3.  Google Scholar

[6]

J. von Below, A characteristic equation associated to an eigenvalue problem on $C^2$-networks,, Linear Algebra Appl., 71 (1985), 309.  doi: 10.1016/0024-3795(85)90258-7.  Google Scholar

[7]

J. von Below, Classical solvability of linear parabolic equations on networks,, J. Differ. Equations, 72 (1988), 316.  doi: 10.1016/0022-0396(88)90158-1.  Google Scholar

[8]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[9]

R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures,, Mathématiques et Applications 50, (2006).  doi: 10.1007/3-540-37726-3.  Google Scholar

[10]

C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity,, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95.  doi: 10.1016/S0045-7825(97)00216-8.  Google Scholar

[11]

Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings,, Acta Appl. Math., 110 (2010), 511.  doi: 10.1007/s10440-009-9459-8.  Google Scholar

[12]

Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks,, Networks and Heterogeneous Media, 5 (2010), 315.  doi: 10.3934/nhm.2010.5.315.  Google Scholar

[13]

Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs,, Netw. Heterog. Media, 6 (2011), 297.  doi: 10.3934/nhm.2011.6.297.  Google Scholar

[14]

J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations,, Z. Angew. Math. Phys., 64 (2013), 1145.  doi: 10.1007/s00033-012-0274-0.  Google Scholar

[15]

J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures,, in Systems & Control: Foundations & Applications, (1994).  doi: 10.1007/978-1-4612-0273-8.  Google Scholar

[16]

Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation,, Z. Angew. Math. Phys., 56 (2005), 630.  doi: 10.1007/s00033-004-3073-4.  Google Scholar

[17]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, CRC Research Notes in Mathematics, (1999).   Google Scholar

[18]

R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,, Int. J. Numer. Meth. Fluids, 46 (2004), 533.   Google Scholar

[19]

Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces,, Studia Math., 88 (1988), 37.   Google Scholar

[20]

D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams,, Journal of Mathematical Analysis and Applications, 337 (2008), 174.  doi: 10.1016/j.jmaa.2007.03.080.  Google Scholar

[21]

F. Ali Mehmeti, A characterization of a generalized $C^\infty$-notion on nets,, Integr. Equat. Oper. Th, 9 (1986), 753.  doi: 10.1007/BF01202515.  Google Scholar

[22]

H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods,, Wiley, (1995).   Google Scholar

[23]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Networks and Heterogeneous Media, 2 (2007), 425.  doi: 10.3934/nhm.2007.2.425.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system,, J. Math. Pures Appl., 84 (2005), 407.  doi: 10.1016/j.matpur.2004.09.006.  Google Scholar

[26]

M. E. Taylor, Pseudodifferential Operators,, Princeton Mathematical Series, (1981).   Google Scholar

[27]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks,, SIAM J. Contr. Optim, 48 (2009), 2771.  doi: 10.1137/080733590.  Google Scholar

[28]

G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings,, SIAM J. Control Optim., 47 (2008), 1762.  doi: 10.1137/060649367.  Google Scholar

[29]

X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system,, J. Differ. Equations, 204 (2004), 380.  doi: 10.1016/j.jde.2004.02.004.  Google Scholar

[30]

X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system,, C. R. Acad. Sci. Paris, 336 (2003), 823.  doi: 10.1016/S1631-073X(03)00204-8.  Google Scholar

[31]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction,, Arch. Ration. Mech. An., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[32]

E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type,, in Optimal Control and Partial Differential Equations, (2001), 198.   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[13]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[18]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]