Citation: |
[1] |
K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differential and Integral Equations, 17 (2004), 1395-1410. |
[2] |
K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings, Applications of Mathematics, 52 (2007), 327-343.doi: 10.1007/s10492-007-0018-1. |
[3] |
K. Ammari and M. Tucsnak, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM J. Control Optim., 39 (2000), 1160-1181.doi: 10.1137/S0363012998349315. |
[4] |
M. Alves, J. Muñoz Rivera, M. Sepúlveda and O. V. Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (2014), 345-365.doi: 10.1137/130923233. |
[5] |
V. M. Babich, The higher-dimensional WKB method or ray method. Its analogues and generalizations, in Partial Differential Equations V, Encyclopedia of Mathematical Sciences, Springer-Verlag, Berlin/New York, 34 (1999), 91-131, 241-247.doi: 10.1007/978-3-642-58423-7_3. |
[6] |
J. von Below, A characteristic equation associated to an eigenvalue problem on $C^2$-networks, Linear Algebra Appl., 71 (1985), 309-325.doi: 10.1016/0024-3795(85)90258-7. |
[7] |
J. von Below, Classical solvability of linear parabolic equations on networks, J. Differ. Equations, 72 (1988), 316-337.doi: 10.1016/0022-0396(88)90158-1. |
[8] |
A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.doi: 10.1007/s00208-009-0439-0. |
[9] |
R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Mathématiques et Applications 50, Springer-Verlag, Berlin, 2006.doi: 10.1007/3-540-37726-3. |
[10] |
C. Farhat, M. Lesoinne and P. LeTallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comp. Meth. Appl. Mech. Eng., 157 (1998), 95-114.doi: 10.1016/S0045-7825(97)00216-8. |
[11] |
Z. J. Han and L. Wang, Riesz basis property and stability of planar networks of controlled strings, Acta Appl. Math., 110 (2010), 511-533.doi: 10.1007/s10440-009-9459-8. |
[12] |
Z. J. Han and G. Q. Xu, Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks, Networks and Heterogeneous Media, 5 (2010), 315-334.doi: 10.3934/nhm.2010.5.315. |
[13] |
Z. J. Han and G. Q. Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs, Netw. Heterog. Media, 6 (2011), 297-327.doi: 10.3934/nhm.2011.6.297. |
[14] |
J. H. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.doi: 10.1007/s00033-012-0274-0. |
[15] |
J. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures, in Systems & Control: Foundations & Applications, Birkhäuser, Boston, 1994.doi: 10.1007/978-1-4612-0273-8. |
[16] |
Z. Liu and R. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.doi: 10.1007/s00033-004-3073-4. |
[17] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, CRC Research Notes in Mathematics, vol. 398, Chapman and Hall/CRC, Boca Raton, 1999. |
[18] |
R. von Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, Int. J. Numer. Meth. Fluids, 46 (2004), 533-544. |
[19] |
Yu. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42. |
[20] |
D. Mercier and V. Régnier, Spectrum of a network of Euler-Bernoulli beams, Journal of Mathematical Analysis and Applications, 337 (2008), 174-196.doi: 10.1016/j.jmaa.2007.03.080. |
[21] |
F. Ali Mehmeti, A characterization of a generalized $C^\infty$-notion on nets, Integr. Equat. Oper. Th, 9 (1986), 753-766.doi: 10.1007/BF01202515. |
[22] |
H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods, Wiley, New York, 1995. |
[23] |
S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Networks and Heterogeneous Media, 2 (2007), 425-479.doi: 10.3934/nhm.2007.2.425. |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4612-5561-1. |
[25] |
J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system, J. Math. Pures Appl., 84 (2005), 407-470.doi: 10.1016/j.matpur.2004.09.006. |
[26] |
M. E. Taylor, Pseudodifferential Operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981. |
[27] |
J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks, SIAM J. Contr. Optim, 48 (2009), 2771-2797.doi: 10.1137/080733590. |
[28] |
G. Q. Xu, D. Y. Liu and Y. Q. Liu, Abstract second order hyperbolic system and applications to controlled networks of strings, SIAM J. Control Optim., 47 (2008), 1762-1784.doi: 10.1137/060649367. |
[29] |
X. Zhang and E. Zuazua, Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system, J. Differ. Equations, 204 (2004), 380-438.doi: 10.1016/j.jde.2004.02.004. |
[30] |
X. Zhang ang E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system, C. R. Acad. Sci. Paris, Ser. I, 336 (2003), 823-828.doi: 10.1016/S1631-073X(03)00204-8. |
[31] |
X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Ration. Mech. An., 184 (2007), 49-120.doi: 10.1007/s00205-006-0020-x. |
[32] |
E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type, in Optimal Control and Partial Differential Equations, J. L. Menaldi et al., eds., IOS Press, 2001, 198-210. |