December  2016, 11(4): 693-719. doi: 10.3934/nhm.2016014

An epidemic model with nonlocal diffusion on networks

1. 

University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, Cergy-Pontoise, F-95000

2. 

University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, F-95000 Cergy-Pontoise, France

Received  November 2015 Revised  February 2016 Published  October 2016

We consider a SIS system with nonlocal diffusion which is the continuous version of a discrete model for the propagation of epidemics on a metapopulation network. Under the assumption of limited transmission, we prove the global existence of a unique solution for any diffusion coefficients. We investigate the existence of an endemic equilibrium and prove its linear stability, which corresponds to the loss of stability of the disease-free equilibrium. In the case of equal diffusion coefficients, we reduce the system to a Fisher-type equation with nonlocal diffusion, which allows us to study the large time behaviour of the solutions. We show large time convergence to either the disease-free or the endemic equilibrium.
Citation: Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014
References:
[1]

V. Colizza, R. Pastor-Sattoras and A. Vespignani, Reaction-diffusion processes and meta-population models in heterogeneous networks,, Nat. Phys., 3 (2007), 276.   Google Scholar

[2]

V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.148701.  Google Scholar

[3]

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations,, J. Theor. Biol., 251 (2008), 450.  doi: 10.1016/j.jtbi.2007.11.028.  Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[5]

S. N. Dorogotsev and J. F. F. Mendes, Scaling properties of scale-free evolving networks: Continuous approach,, Phys. Rev. E, 63 (2001).   Google Scholar

[6]

S. N. Dorogotsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002).   Google Scholar

[7]

I. Hanski, A practical model of metapopulation dynamics,, J. Animal Ecology, 63 (1994), 151.  doi: 10.2307/5591.  Google Scholar

[8]

I. Hanski, Metapopulation dynamics,, Metapopulation Biology, (1997), 69.  doi: 10.1016/B978-012323445-2/50007-9.  Google Scholar

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[10]

D. Juher, J. Ripoll and J. Saldana, Analysis and monte carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulation,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.041920.  Google Scholar

[11]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295.  doi: 10.1098/rsif.2005.0051.  Google Scholar

[12]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control,, Bull. Entomology Soc. of America, 71 (1969), 237.  doi: 10.1093/besa/15.3.237.  Google Scholar

[13]

E. Logak and I. Passat, A nonlocal model for epidemics on networks in the case of nonlimited transmission,, preprint., ().   Google Scholar

[14]

M. E. J. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

R. Pastor-Sattoras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks,, Rev. Mod. Phys., 87 (2015), 925.  doi: 10.1103/RevModPhys.87.925.  Google Scholar

[16]

R. Pastor-Sattoras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Lett., 86 (2001).  doi: 10.1103/PhysRevLett.86.3200.  Google Scholar

[17]

J. Saldana, Continous-time formulation of reaction-diffusion processes on heterogeneous metapopulations,, Phys. Rev. E, 78 (2008).   Google Scholar

[18]

J. Saldana, Analysis and Monte-Carlo simulations of a model for spread of infectious diseases in heterogeneous metapopulations,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.041920.  Google Scholar

[19]

J. Saldana, Modelling the spread of infectious diseases in complex metapopulations,, Math. Model. Nat. Phenom., 5 (2010), 22.  doi: 10.1051/mmnp/20105602.  Google Scholar

show all references

References:
[1]

V. Colizza, R. Pastor-Sattoras and A. Vespignani, Reaction-diffusion processes and meta-population models in heterogeneous networks,, Nat. Phys., 3 (2007), 276.   Google Scholar

[2]

V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.148701.  Google Scholar

[3]

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations,, J. Theor. Biol., 251 (2008), 450.  doi: 10.1016/j.jtbi.2007.11.028.  Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[5]

S. N. Dorogotsev and J. F. F. Mendes, Scaling properties of scale-free evolving networks: Continuous approach,, Phys. Rev. E, 63 (2001).   Google Scholar

[6]

S. N. Dorogotsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002).   Google Scholar

[7]

I. Hanski, A practical model of metapopulation dynamics,, J. Animal Ecology, 63 (1994), 151.  doi: 10.2307/5591.  Google Scholar

[8]

I. Hanski, Metapopulation dynamics,, Metapopulation Biology, (1997), 69.  doi: 10.1016/B978-012323445-2/50007-9.  Google Scholar

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[10]

D. Juher, J. Ripoll and J. Saldana, Analysis and monte carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulation,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.041920.  Google Scholar

[11]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295.  doi: 10.1098/rsif.2005.0051.  Google Scholar

[12]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control,, Bull. Entomology Soc. of America, 71 (1969), 237.  doi: 10.1093/besa/15.3.237.  Google Scholar

[13]

E. Logak and I. Passat, A nonlocal model for epidemics on networks in the case of nonlimited transmission,, preprint., ().   Google Scholar

[14]

M. E. J. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167.  doi: 10.1137/S003614450342480.  Google Scholar

[15]

R. Pastor-Sattoras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks,, Rev. Mod. Phys., 87 (2015), 925.  doi: 10.1103/RevModPhys.87.925.  Google Scholar

[16]

R. Pastor-Sattoras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Lett., 86 (2001).  doi: 10.1103/PhysRevLett.86.3200.  Google Scholar

[17]

J. Saldana, Continous-time formulation of reaction-diffusion processes on heterogeneous metapopulations,, Phys. Rev. E, 78 (2008).   Google Scholar

[18]

J. Saldana, Analysis and Monte-Carlo simulations of a model for spread of infectious diseases in heterogeneous metapopulations,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.041920.  Google Scholar

[19]

J. Saldana, Modelling the spread of infectious diseases in complex metapopulations,, Math. Model. Nat. Phenom., 5 (2010), 22.  doi: 10.1051/mmnp/20105602.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[7]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[17]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[18]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]