We study the emergence of local exponential synchronization in an ensemble of generalized heterogeneous Kuramoto oscillators with different intrinsic dynamics. In the classic Kuramoto model, intrinsic dynamics are given by the Kronecker flow with constant natural frequencies. We generalize the constant natural frequencies to smooth functions that depend on the state and time so that it can describe a more realistic situation arising from neuroscience. In this setting, the ensemble of generalized Kuramoto oscillators loses its synchronization even when the coupling strength is large. This leads to the study of a concept of "relaxed" synchronization, which is called "practical synchronization" in literature. In this new concept of "weak" synchronization, the phase diameter of the entire ensemble is uniformly bounded by some constant inversely proportional to the coupling strength. We focus on the complete synchronizability of a subensemble consisting of generalized Kuramoto oscillators with the same intrinsic dynamics; moreover, we provide several sufficient frameworks leading to local exponential synchronization of each homogeneous subensemble, although the whole ensemble is not fully synchronized. This is a generalization of an earlier analytical result regarding practical synchronization. We also provide several numerical simulations and compare them with analytical results.
Citation: |
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137.![]() ![]() |
[2] |
T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp.
doi: 10.1063/1.2952447.![]() ![]() ![]() |
[3] |
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Physics Reports, 469 (2008), 93-153.
doi: 10.1016/j.physrep.2008.09.002.![]() ![]() ![]() |
[4] |
D. Benedetto, E. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6.![]() ![]() |
[5] |
S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68.
doi: 10.1007/s11071-008-9379-6.![]() ![]() ![]() |
[6] |
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0.![]() ![]() |
[7] |
L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2008), arXiv: 0807.4717v2.
doi: 10.1063/1.3049136.![]() ![]() |
[8] |
J. Cho, S.-Y Ha, F. Huang, J. Jin and D. Ko, Emergence of bi-cluster flocking for agent-based
models with unit speed constraint, Analysis and Applications, 14 (2016), p39.
doi: 10.1142/S0219530515400023.![]() ![]() |
[9] |
Y. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phaselocked states for the Kuramoto model, Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011.![]() ![]() ![]() |
[10] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.
doi: 10.1016/j.physd.2010.08.004.![]() ![]() ![]() |
[11] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884.![]() ![]() ![]() |
[12] |
F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.
doi: 10.1016/j.automatica.2014.04.012.![]() ![]() ![]() |
[13] |
F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillator, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X.![]() ![]() ![]() |
[14] |
S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase
model, Physica D, 239 (2010), 1692-1700.
doi: 10.1016/j.physd.2010.05.003.![]() ![]() ![]() |
[15] |
S.-Y. Ha and M.-J. Kang, Fast and slow relaxations to bi-cluster configurations for the ensemble of Kuramoto oscillators,, Quarterly of Applied Mathematics, 71 (2013), 707-728.
doi: 10.1090/S0033-569X-2013-01302-0.![]() ![]() ![]() |
[16] |
S.-Y. Ha, H. K. Kim and J.-Y. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), 1441-1462.
doi: 10.1088/0951-7715/28/5/1441.![]() ![]() ![]() |
[17] |
S.-Y. Ha, H. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10.![]() ![]() |
[18] |
S.-Y. Ha, Z. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070.
doi: 10.1016/j.jde.2013.07.013.![]() ![]() ![]() |
[19] |
S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Commun. Math. Sciences, 12 (2014), 485-508.
doi: 10.4310/CMS.2014.v12.n3.a5.![]() ![]() ![]() |
[20] |
S.-Y. Ha, S. E. Noh and J. Park, Interplay of inertia and heterogeneous dynamics in an ensemble of Kuramoto oscillators, Analysis and Applications, (2016), p1.
doi: 10.1142/S0219530516500111.![]() ![]() |
[21] |
S.-Y. Ha, S. E. Noh and J. Park, Practical synchronization of Kuramoto system with an intrinsic dynamics, Networks and Heterogeneous Media, 10 (2015), 787-807.
doi: 10.3934/nhm.2015.10.787.![]() ![]() ![]() |
[22] |
A. Jadbabaie, N. Motee and M. Barahona, On the Stability of the Kuramoto Model of Coupled Nonlinear Oscillators, In Proceedings of the American Control Conference. Boston, Massachusetts, 2004.
![]() |
[23] |
J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Timevarying Multi-agent Systems, In Proceedings of 12th International Conference on Control, Automation and Systems. Jeju Island, Korea, 2012.
![]() |
[24] |
Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 30 (1975), p420.
![]() |
[25] |
Z Li, X. Xue and D. Yu, On the Lojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 0227041, 20pp.
doi: 10.1063/1.4908104.![]() ![]() ![]() |
[26] |
Z. Li, X. Xue and D. Yu, Synchronization and tansient stability in power grids based on Lojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511.
doi: 10.1137/130950604.![]() ![]() ![]() |
[27] |
M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292.
doi: 10.1007/s11071-012-0346-x.![]() ![]() ![]() |
[28] |
M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073.
![]() |
[29] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x.![]() ![]() ![]() |
[30] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.
doi: 10.1016/j.physd.2005.01.017.![]() ![]() ![]() |
[31] |
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 37113, 6pp.
doi: 10.1063/1.2930766.![]() ![]() ![]() |
[32] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Pres, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
[33] |
J. G. Restrepo, E. Ott and B. R. Hunt, Synchronization in large directed networks of coupled
phase oscillators, Chaos, 16 (2006), 015107, 10pp.
doi: 10.1063/1.2148388.![]() ![]() ![]() |
[34] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46.
doi: 10.1143/PTP.79.39.![]() ![]() ![]() |
[35] |
P. S Skarda, E. Ott and J. G. Restrepo, Cluster synchrony in systems of coupled phase
oscillators with higher-order coupling, Phys. Rev. E, 143 (2000), 036208.
![]() |
[36] |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4.![]() ![]() ![]() |
[37] |
S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347.
doi: 10.1007/BF00276440.![]() ![]() ![]() |
[38] |
J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of
nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.
doi: 10.1007/BF01048044.![]() ![]() |
[39] |
A. T. Winfree, The Geometry of Biological Time, Springer, New York, 1980.
![]() ![]() |
[40] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.![]() ![]() |