\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling

We thank the anonymous referees for valuable comments to improve the quality of this paper.
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we focus on the global-in-time solvability of the Kuramoto-Sakaguchi equation under non-local coupling. We further study the nonlinear stability of the trivial stationary solution in the presence of sufficiently large diffusivity, and the existence of the solution under vanishing diffusion.

    Mathematics Subject Classification: Primary: 35B10, 35B41; Secondary: 35Q70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. M. Abrams and S. H. Strogatz, Chimera States for Coupled Oscillators, Phys. Rev. Lett., 93 (2004), 174102. 
    [2] D. M. AbramsR. MirolloS. H. Strogatz and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101 (2008), 084103.  doi: 10.1103/PhysRevLett.101.084103.
    [3] J.A. Acebrón, et al., Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. 
    [4] L.L. BonillaJ.C. Neu and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators, J. Stat. Phys., 1992 (67), 313-330.  doi: 10.1007/BF01049037.
    [5] H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite dimensional Kuramoto model, Ergod. Theory Dyn. Syst., 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.
    [6] J.D. Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys., 74 (1994), 1047-1084.  doi: 10.1007/BF02188217.
    [7] J.D. Crawford and K. T. R. Davies, Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings, Physica D, 125 (1999), 1-46.  doi: 10.1016/S0167-2789(98)00235-8.
    [8] H. Daido, Population dynamics of randomly interacting self-oscillators. Ⅰ. Tractable models without frustration, Prog. Theo. Phys., 77 (1987), 622-634.  doi: 10.1143/PTP.77.622.
    [9] G. FilatrellaA.H. Nielsen and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61 (2008), 485-491.  doi: 10.1140/epjb/e2008-00098-8.
    [10] C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 2009.
    [11] S.Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Diff. Eq., 259 (2015), 2430-2457.  doi: 10.1016/j.jde.2015.03.038.
    [12] S.Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.  doi: 10.1007/s10955-015-1270-5.
    [13] H. Honda and A. Tani, Mathematical analysis of synchronization from the perspective of network science, to appear in Mathematical Analysis of Continuum Mechanics and Industrial Applications (Proceedings of the international conference CoMFoS15) (eds. H. Itou et al.), Springer Singapore, (2017).
    [14] T. Ichinomiya, Frequency synchronization in a random oscillator network, Phys. Rev. E, 70 (2004), 026116.  doi: 10.1103/PhysRevE.70.026116.
    [15] Y. KawamuraH. Nakao and Y. Kuramoto, Noise-induced turbulence in nonlocally coupled oscillators, Phys. Rev. E, 75 (2007), 036209, 17pp..  doi: 10.1103/PhysRevE.75.036209.
    [16] Y. Kawamura, From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation, Phys. Rev. E, 89 (2014), 010901.  doi: 10.1103/PhysRevE.89.010901.
    [17] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Int. Symp. on Mathematical problems in theoretical physics (eds. H. Araki), Springer, New York, 39 (1975), 420-422.
    [18] Y. Kuramoto, Rhythms and turbulence in population of chemical oscillations, Physica A, 106 (1981), 128-143.  doi: 10.1016/0378-4371(81)90214-4.
    [19] Y. KuramotoChemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984.  doi: 10.1007/978-3-642-69689-3.
    [20] Y. KuramotoS. ShimaD. Battogtokh and Y. Shiogai, Mean-field theory revives in self-oscillatory fields with non-local coupling, Prog. Theor. Phys. Suppl., 161 (2006), 127-143.  doi: 10.1143/PTPS.161.127.
    [21] Y. Kuramoto, Departmental Bulletin Paper, (Japanese), Kyoto University, 2007.
    [22] Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5 (2002), 380-385. 
    [23] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968.
    [24] M. Lavrentiev and R. S. Spigler, Existence and uniqueness of solutions to the KuramotoSakaguchi nonlinear parabolic integrodifferential equatio, Differential and Integral Equations, 13 (2000), 649-667. 
    [25] M. LavrentievR.S. Spigler and A. Tani, Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution, Differential and Integral Equations, 27 (2014), 879-8992. 
    [26] Z. LiY. Kim and S. H. Ha, Asymptotic synchronous behavior of Kuramoto type models with frustrations, Networks and Heterogeneous Media, 9 (2014), 33-64.  doi: 10.3934/nhm.2014.9.33.
    [27] J. L. Lions and  E. MagenesNon-Homogeneous Boundary Value Problems and Applications, Vol.1, Springer-Verlag, Berlin, 1972. 
    [28] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104. 
    [29] H. Nakao and A. S. Mikhailov, Diffusion-induced instability and chaos in random oscillator networks, Phys. Rev. E, 79 (2009), 036214. 
    [30] H. Risken, The Fokker-Planck Equation, Springer, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.
    [31] Y. Shiogai and Y. Kuramoto, Wave propagation in nonlocally coupled oscillators with noise, Prog. Thoer. Phys. Suppl., 150 (2003), 435-438. 
    [32] A. Sjöberg, On the Korteweg-de Vries equation, J. Math. Anal. Appl., 29 (1970), 569-579.  doi: 10.1016/0022-247X(70)90068-5.
    [33] R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach, New York, 1967.
    [34] S.H. Strogatz and E. Mirollo, Stability of incoherent in a population of coupled oscillators, J. Stat. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.
    [35] R. Temamnfinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0645-3.
    [36] M. Tsutsumi and T. Mukasa, Parabolic regularizations for the generalized Kortewegde Vries equation, Funkcialaj Ekvacioj, 14 (1971), 89-110. 
    [37] A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Biol, 16 (1967), 15-43.  doi: 10.1016/0022-5193(67)90051-3.
  • 加载中
SHARE

Article Metrics

HTML views(652) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return