In this paper, we introduce a discrete time-finite state model for pedestrian flow on a graph in the spirit of the Hughes dynamic continuum model. The pedestrians, represented by a density function, move on the graph choosing a route to minimize the instantaneous travel cost to the destination. The density is governed by a conservation law whereas the minimization principle is described by a graph eikonal equation. We show that the discrete model is well-posed and the numerical examples reported confirm the validity of the proposed model and its applicability to describe real situations.
Citation: |
[1] |
"Jamarat: Study of Current Conditions and Means of Improvements", Hajj Research Centre, Um Al-Qura University Saudi Arabia, 1984.
![]() |
[2] |
A. Alla, M. Falcone and D. Kalise, An efficient policy iteration algorithm for dynamic programming equations, SIAM J. Sci. Comput., 37 (2015), A181-A200.
doi: 10.1137/130932284.![]() ![]() ![]() |
[3] |
D. Amadori and M.Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Math. Sci., 32 (2012), 259-280.
doi: 10.1016/S0252-9602(12)60016-2.![]() ![]() ![]() |
[4] |
D. Amadori, P. Goatin and M. D. Rosini, Existence results for Hughes model for pedestrian flows, J. Math. Anal. Appl., 420 (2014), 387-406.
doi: 10.1016/j.jmaa.2014.05.072.![]() ![]() ![]() |
[5] |
M. Bardi and J. P. Maldonado Lopez, A Dijkstra-type algorithm for dynamic games, Dyn. Games Appl., (2015), 1-4.
doi: 10.1007/s13235-015-0156-0.![]() ![]() ![]() |
[6] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.
doi: 10.1137/090746677.![]() ![]() ![]() |
[7] |
M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: theoretical study, Netw. Heterog. Media, 9 (2014), 519-552.
doi: 10.3934/nhm.2014.9.519.![]() ![]() ![]() |
[8] |
F. Camilli and C. Marchi, A comparison among various notions of viscosity solutions for Hamilton-Jacobi equations on networks, J. Math. Anal. Appl., 407 (2013), 112-118.
doi: 10.1016/j.jmaa.2013.05.015.![]() ![]() ![]() |
[9] |
F. Camilli and C. Marchi, Staionary mean field games systems defined on networks, SIAM J. Cont. Optim., 54 (2016), 1085-1103.
doi: 10.1137/15M1022082.![]() ![]() ![]() |
[10] |
F. Camilli, A. Festa and D. Schieborn, An approximation scheme for a Hamilton-Jacobi equation defined on a network, Appl. Numer. Math., 73 (2013), 33-47.
doi: 10.1016/j.apnum.2013.05.003.![]() ![]() ![]() |
[11] |
E. Carlini, A. Festa, F. J. Silva and M. T. Wolfram, A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow, Dyn. Games Appl., (2016), 1-23.
doi: 10.1007/s13235-016-0202-6.![]() ![]() |
[12] |
G. Costeseque, J. P. Lebacque and R. Monneau, A convergent scheme for Hamilton-Jacobi equations on a junction: Application to traffic, Numer. Math., 129 (2015), 405-447.
doi: 10.1007/s00211-014-0643-z.![]() ![]() ![]() |
[13] |
E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks, Netw. Heterog. Media, 10 (2015), 857-876.
doi: 10.3934/nhm.2015.10.857.![]() ![]() ![]() |
[14] |
M. Di Francesco, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case, J. Differential Equations, 250 (2011), 1334-1362.
doi: 10.1016/j.jde.2010.10.015.![]() ![]() ![]() |
[15] |
Z. Fang, Q. Li, Q. Li, L. D. Han and D. Wang, A proposed pedestrian waiting-time model for improving space-time use efficiency in stadium evacuation scenarios, Build. Environ., 46 (2011), 1774-1784.
doi: 10.1016/j.buildenv.2011.02.005.![]() ![]() |
[16] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks" AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences, 2006.
![]() ![]() |
[17] |
L. Huang, S. C. Wong, M. Zhang, C. W. Shu and W. H. K. Lam, Revisiting Hughes dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transportat. Res. B-Meth., 43 (2009), 127-141.
doi: 10.1016/j.trb.2008.06.003.![]() ![]() |
[18] |
R. L. Hughes, The flow of large crowds of pedestrians, Math. Comput. Simulat., 53 (2000), 367-370.
doi: 10.1016/S0378-4754(00)00228-7.![]() ![]() |
[19] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transport. Res. B-Meth., 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7.![]() ![]() |
[20] |
R. L. Hughes, The flow of human crowds, Annu. rev. fluid mech., 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136.![]() ![]() ![]() |
[21] |
P.-L. Lions and P. E. Souganidis, Viscosity solutions for junctions: Well posedness and stability, Rend. Lincei Mat. Appl., 27 (2016), 535-545.
doi: 10.4171/RLM/747.![]() ![]() ![]() |
[22] |
J. Manfredi, A. Oberman and A. Sviridov, Nonlinear elliptic partial differential equations and p-harmonic functions on graphs, Differ. Integral Equ., 28 (2015), 79-102.
![]() ![]() |
[23] |
M. Puterman and S. L. Brumelle, On the convergence of policy iteration in stationary dynamic programming, Math. Oper. Res., 4 (1979), 60-69.
doi: 10.1287/moor.4.1.60.![]() ![]() ![]() |
[24] |
J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681-698.
doi: 10.1137/S0036142999363668.![]() ![]() ![]() |
[25] |
A. Treuille, S. Cooper and Z. Popovîc, Continuum crowds, ACM Trans. Graph., 25 (2006), 1160-1168.
doi: 10.1145/1179352.1142008.![]() ![]() |