March  2017, 12(1): 147-171. doi: 10.3934/nhm.2017006

An improved homogenization result for immiscible compressible two-phase flow in porous media

1. 

CNRS / UNIV PAU & PAYS ADOUR, Laboratoire de Mathématiques et de leurs Applications-IPRA, UMR 5142, Av. de l'Université, 64000 Pau, France

2. 

Laboratory of Fluid Dynamics and Seismics, 9 Institutskiy per., Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia

3. 

CNRS / UNIV PAU & PAYS ADOUR, Laboratoire de Mathématiques et de leurs Applications-IPRA, UMR 5142, Av. de l'Université, 64000 Pau, France

4. 

University of Tromsø, Campus in Narvik, Postbox 385, Narvik, 8505, Norway

5. 

Institute for Information Transmission Problems of RAS, Bolshoy Karetny per., 19, Moscow, 127051, Russia

Received  November 2015 Revised  June 2016 Published  February 2017

The paper deals with a degenerate model of immiscible compressible two-phase flow in heterogeneous porous media. We consider liquid and gas phases (water and hydrogen) flow in a porous reservoir, modeling the hydrogen migration through engineered and geological barriers for a deep repository for radioactive waste. The gas phase is supposed compressible and obeying the ideal gas law. The flow is then described by the conservation of the mass for each phase. The model is written in terms of the phase formulation, i.e. the liquid saturation phase and the gas pressure phase are primary unknowns. This formulation leads to a coupled system consisting of a nonlinear degenerate parabolic equation for the gas pressure and a nonlinear degenerate parabolic diffusion-convection equation for the liquid saturation, subject to appropriate boundary and initial conditions. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. The aim of this paper is to extend our previous results to the case of an ideal gas. In this case a new degeneracy appears in the pressure equation. With the help of an appropriate regularization we show the existence of a weak solution to the studied system. We also consider the corresponding nonlinear homogenization problem and provide a rigorous mathematical derivation of the upscaled model by means of the two-scale convergence.

Citation: Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006
References:
[1]

E. AhusbordeB. Amaziane and M. Jurak, Three-dimensional numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, J. of the Geological Society, 294 (2014), 1-19. Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[3]

H. W. Alt and E. di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 335-392. Google Scholar

[4]

B. AmazianeS. AntontsevL. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository, SIAM J. Multiscale Model. Simul., 8 (2010), 2023-2047. doi: 10.1137/100790215. Google Scholar

[5]

B. Amaziane and M. Jurak, A new formulation of immiscible compressible two-phase flow in porous media, C. R. Mecanique, 336 (2008), 600-605. doi: 10.1016/j.crme.2008.04.008. Google Scholar

[6]

B. AmazianeM. Jurak and A. Vrbaški, Homogenization results for a coupled system modeling immiscible compressible two-phase flow in porous media by the concept of global pressure, Appl. Anal., 92 (2013), 1417-1433. doi: 10.1080/00036811.2012.682059. Google Scholar

[7]

B. AmazianeM. Jurak and A. Žgaljić-Keko, Modeling and numerical simulations of immiscible compressible two-phase flow in porous media by the concept of global pressure, Transp. Porous Media, 84 (2010), 133-152. doi: 10.1007/s11242-009-9489-8. Google Scholar

[8]

B. AmazianeM. Jurak and A. Žgaljić-Keko, An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, J. Differential Equations, 250 (2011), 1685-1718. doi: 10.1016/j.jde.2010.09.008. Google Scholar

[9]

B. AmazianeL. Pankratov and A. Piatnitski, The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types, Discrete Continuous and Dynamical Systems, Ser. B, 18 (2013), 1217-1251. doi: 10.3934/dcdsb.2013.18.1217. Google Scholar

[10]

B. AmazianeL. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures, M3AS, 24 (2014), 1421-1451. doi: 10.1142/S0218202514500055. Google Scholar

[11]

ANDRA, Dossier 2005 Argile, les Recherches de l'Andra sur le Stockage Géologique des Déchets Radioactifs á Haute Activité et á Vie Longue, Collection les Rapports, Andra, Châtenay-Malabry, 2005.Google Scholar

[12]

S.~N. Antontsev, On the solvability of boundary value problems for degenerating equations of two-phase flow, Solid-State Dynamics, 10 (1972), 28-53. Google Scholar

[13]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Non-Homogeneous Fluids, (in Russian), Nauka, Novosibirsk, 1983.Google Scholar

[14]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990. Google Scholar

[15]

T. J. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19 (1992), 1009-1031. doi: 10.1016/0362-546X(92)90121-T. Google Scholar

[16]

A. BourgeatO. Gipouloux and E. Marušić-Paloka, Mathematical modeling of an under-ground waste disposal site by upscaling, Math. Methods Appl. Sci., 27 (2004), 381-403. doi: 10.1002/mma.459. Google Scholar

[17]

A. BourgeatO. Gipouloux and F. Smai, Scaling up of source terms with random behavior for modelling transport migration of contaminants in aquifers, Nonlinear Anal. Real World Appl., 11 (2010), 4513-4523. doi: 10.1016/j.nonrwa.2008.10.062. Google Scholar

[18]

A. Bourgeat and E. Marušić-Paloka, A homogenized model of an underground waste repository including a disturbed zone, Multiscale Model. Simul., 3 (2005), 918-939. doi: 10.1137/040605424. Google Scholar

[19]

A. BourgeatE. Marušić-Paloka and A. Piatnitski, Scaling up of an underground nuclear waste repository including a possibly damaged zone, Asymptot. Anal., 67 (2010), 147-165. Google Scholar

[20]

A. Bourgeat and A. Piatnitski, Averaging of a singular random source term in a diffusion convection equation, SIAM J. Math. Anal., 42 (2010), 2626-2651. doi: 10.1137/080736077. Google Scholar

[21]

C. Cancés and P. Michel, An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field, SIAM J. Math. Anal., 44 (2012), 966-992. doi: 10.1137/11082943X. Google Scholar

[22]

F. CaroB. Saad and M. Saad, Study of degenerate parabolic system modellingthe hydrogen displacement in a nuclear waste repository, Discrete and Continuous Dynamical Systems, Ser. S, 7 (2014), 191-205. Google Scholar

[23]

G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986.Google Scholar

[24]

Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations, 171 (2001), 203-232. doi: 10.1006/jdeq.2000.3848. Google Scholar

[25]

Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization, J. Differential Equations, 186 (2002), 345-376. doi: 10.1016/S0022-0396(02)00027-X. Google Scholar

[26]

Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006. doi: 10.1137/1.9780898718942. Google Scholar

[27]

J. CroiséG. MayerJ. Talandier and J. Wendling, Impact of water consumption and saturation-dependent corrosion rate on hydrogen generation and migration from an intermediate-level radioactive waste repository, Transp. Porous Media, 90 (2011), 59-75. Google Scholar

[28]

FORGE, http://www.bgs.ac.uk/forge/home.htmlGoogle Scholar

[29]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modéles Non-Linéaires de L'ingénierie Pétroliére, Springer-Verlag, Berlin, 1996. Google Scholar

[30]

C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media, Adv. Differential Equations, 9 (2004), 1235-1278. Google Scholar

[31]

C. Galusinski and M. Saad, Water-gas flow in porous media, Discrete Contin. Dyn. Syst., Ser. B, 9 (2008), 281-308. Google Scholar

[32]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media, J. Differential Equations, 244 (2008), 1741-1783. doi: 10.1016/j.jde.2008.01.013. Google Scholar

[33]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media, C. R. Acad. Sci. Paris, Sér. I, 347 (2009), 249-254. doi: 10.1016/j.crma.2009.01.023. Google Scholar

[34]

O. Gipouloux and F. Smai, Scaling up of an underground waste disposal model with random source terms, Internat. J. Multiscale Comput. Engin., 6 (2008), 309-325. Google Scholar

[35]

A. GloriaT. Goudon and S. Krell, Numerical homogenization of a nonlinearly coupled elliptic-parabolic system, reduced basis method, and application to nuclear waste storage, Math. Models Methods Appl. Sci., 23 (2013), 2523-2560. doi: 10.1142/S0218202513500395. Google Scholar

[36]

R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin, 1997.Google Scholar

[37]

P. HenningM. Ohlberger and B. Schweizer, Homogenization of the degenerate two-phase flow equations, Math. Models Methods Appl. Sci., 23 (2013), 2323-2352. doi: 10.1142/S0218202513500334. Google Scholar

[38]

U. Hornung, Homogenization and Porous Media, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1920-0. Google Scholar

[39]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media, Electronic Journal of Differential Equations, 122 (2010), 1-33. Google Scholar

[40]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media, Nonlinear Analysis: Real World Applications, 12 (2011), 1591-1615. doi: 10.1016/j.nonrwa.2010.10.015. Google Scholar

[41]

D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential Equations, 55 (1984), 276-288. doi: 10.1016/0022-0396(84)90084-6. Google Scholar

[42]

R. SengerJ. EwingK. ZhangJ. AvisP. Marschall and I. Gauss, Modeling approaches for investigating gas migration from a deep low/intermediate level waste repository (Switzerland), Transp. Porous Media, 90 (2011), 113-133. doi: 10.1007/s11242-010-9709-2. Google Scholar

[43]

R. P. Shaw, Gas Generation and Migration in Deep Geological Radioactive Waste Repositories, Geological Society, 2015.Google Scholar

[44]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. Google Scholar

show all references

References:
[1]

E. AhusbordeB. Amaziane and M. Jurak, Three-dimensional numerical simulation by upscaling of gas migration through engineered and geological barriers for a deep repository for radioactive waste, J. of the Geological Society, 294 (2014), 1-19. Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[3]

H. W. Alt and E. di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 335-392. Google Scholar

[4]

B. AmazianeS. AntontsevL. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository, SIAM J. Multiscale Model. Simul., 8 (2010), 2023-2047. doi: 10.1137/100790215. Google Scholar

[5]

B. Amaziane and M. Jurak, A new formulation of immiscible compressible two-phase flow in porous media, C. R. Mecanique, 336 (2008), 600-605. doi: 10.1016/j.crme.2008.04.008. Google Scholar

[6]

B. AmazianeM. Jurak and A. Vrbaški, Homogenization results for a coupled system modeling immiscible compressible two-phase flow in porous media by the concept of global pressure, Appl. Anal., 92 (2013), 1417-1433. doi: 10.1080/00036811.2012.682059. Google Scholar

[7]

B. AmazianeM. Jurak and A. Žgaljić-Keko, Modeling and numerical simulations of immiscible compressible two-phase flow in porous media by the concept of global pressure, Transp. Porous Media, 84 (2010), 133-152. doi: 10.1007/s11242-009-9489-8. Google Scholar

[8]

B. AmazianeM. Jurak and A. Žgaljić-Keko, An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media, J. Differential Equations, 250 (2011), 1685-1718. doi: 10.1016/j.jde.2010.09.008. Google Scholar

[9]

B. AmazianeL. Pankratov and A. Piatnitski, The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types, Discrete Continuous and Dynamical Systems, Ser. B, 18 (2013), 1217-1251. doi: 10.3934/dcdsb.2013.18.1217. Google Scholar

[10]

B. AmazianeL. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures, M3AS, 24 (2014), 1421-1451. doi: 10.1142/S0218202514500055. Google Scholar

[11]

ANDRA, Dossier 2005 Argile, les Recherches de l'Andra sur le Stockage Géologique des Déchets Radioactifs á Haute Activité et á Vie Longue, Collection les Rapports, Andra, Châtenay-Malabry, 2005.Google Scholar

[12]

S.~N. Antontsev, On the solvability of boundary value problems for degenerating equations of two-phase flow, Solid-State Dynamics, 10 (1972), 28-53. Google Scholar

[13]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Non-Homogeneous Fluids, (in Russian), Nauka, Novosibirsk, 1983.Google Scholar

[14]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990. Google Scholar

[15]

T. J. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal., 19 (1992), 1009-1031. doi: 10.1016/0362-546X(92)90121-T. Google Scholar

[16]

A. BourgeatO. Gipouloux and E. Marušić-Paloka, Mathematical modeling of an under-ground waste disposal site by upscaling, Math. Methods Appl. Sci., 27 (2004), 381-403. doi: 10.1002/mma.459. Google Scholar

[17]

A. BourgeatO. Gipouloux and F. Smai, Scaling up of source terms with random behavior for modelling transport migration of contaminants in aquifers, Nonlinear Anal. Real World Appl., 11 (2010), 4513-4523. doi: 10.1016/j.nonrwa.2008.10.062. Google Scholar

[18]

A. Bourgeat and E. Marušić-Paloka, A homogenized model of an underground waste repository including a disturbed zone, Multiscale Model. Simul., 3 (2005), 918-939. doi: 10.1137/040605424. Google Scholar

[19]

A. BourgeatE. Marušić-Paloka and A. Piatnitski, Scaling up of an underground nuclear waste repository including a possibly damaged zone, Asymptot. Anal., 67 (2010), 147-165. Google Scholar

[20]

A. Bourgeat and A. Piatnitski, Averaging of a singular random source term in a diffusion convection equation, SIAM J. Math. Anal., 42 (2010), 2626-2651. doi: 10.1137/080736077. Google Scholar

[21]

C. Cancés and P. Michel, An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field, SIAM J. Math. Anal., 44 (2012), 966-992. doi: 10.1137/11082943X. Google Scholar

[22]

F. CaroB. Saad and M. Saad, Study of degenerate parabolic system modellingthe hydrogen displacement in a nuclear waste repository, Discrete and Continuous Dynamical Systems, Ser. S, 7 (2014), 191-205. Google Scholar

[23]

G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986.Google Scholar

[24]

Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations, 171 (2001), 203-232. doi: 10.1006/jdeq.2000.3848. Google Scholar

[25]

Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization, J. Differential Equations, 186 (2002), 345-376. doi: 10.1016/S0022-0396(02)00027-X. Google Scholar

[26]

Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006. doi: 10.1137/1.9780898718942. Google Scholar

[27]

J. CroiséG. MayerJ. Talandier and J. Wendling, Impact of water consumption and saturation-dependent corrosion rate on hydrogen generation and migration from an intermediate-level radioactive waste repository, Transp. Porous Media, 90 (2011), 59-75. Google Scholar

[28]

FORGE, http://www.bgs.ac.uk/forge/home.htmlGoogle Scholar

[29]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modéles Non-Linéaires de L'ingénierie Pétroliére, Springer-Verlag, Berlin, 1996. Google Scholar

[30]

C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media, Adv. Differential Equations, 9 (2004), 1235-1278. Google Scholar

[31]

C. Galusinski and M. Saad, Water-gas flow in porous media, Discrete Contin. Dyn. Syst., Ser. B, 9 (2008), 281-308. Google Scholar

[32]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media, J. Differential Equations, 244 (2008), 1741-1783. doi: 10.1016/j.jde.2008.01.013. Google Scholar

[33]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media, C. R. Acad. Sci. Paris, Sér. I, 347 (2009), 249-254. doi: 10.1016/j.crma.2009.01.023. Google Scholar

[34]

O. Gipouloux and F. Smai, Scaling up of an underground waste disposal model with random source terms, Internat. J. Multiscale Comput. Engin., 6 (2008), 309-325. Google Scholar

[35]

A. GloriaT. Goudon and S. Krell, Numerical homogenization of a nonlinearly coupled elliptic-parabolic system, reduced basis method, and application to nuclear waste storage, Math. Models Methods Appl. Sci., 23 (2013), 2523-2560. doi: 10.1142/S0218202513500395. Google Scholar

[36]

R. Helmig, Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin, 1997.Google Scholar

[37]

P. HenningM. Ohlberger and B. Schweizer, Homogenization of the degenerate two-phase flow equations, Math. Models Methods Appl. Sci., 23 (2013), 2323-2352. doi: 10.1142/S0218202513500334. Google Scholar

[38]

U. Hornung, Homogenization and Porous Media, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-1920-0. Google Scholar

[39]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media, Electronic Journal of Differential Equations, 122 (2010), 1-33. Google Scholar

[40]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media, Nonlinear Analysis: Real World Applications, 12 (2011), 1591-1615. doi: 10.1016/j.nonrwa.2010.10.015. Google Scholar

[41]

D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential Equations, 55 (1984), 276-288. doi: 10.1016/0022-0396(84)90084-6. Google Scholar

[42]

R. SengerJ. EwingK. ZhangJ. AvisP. Marschall and I. Gauss, Modeling approaches for investigating gas migration from a deep low/intermediate level waste repository (Switzerland), Transp. Porous Media, 90 (2011), 113-133. doi: 10.1007/s11242-010-9709-2. Google Scholar

[43]

R. P. Shaw, Gas Generation and Migration in Deep Geological Radioactive Waste Repositories, Geological Society, 2015.Google Scholar

[44]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. Google Scholar

[1]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[2]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[3]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[4]

Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks & Heterogeneous Media, 2010, 5 (3) : 635-647. doi: 10.3934/nhm.2010.5.635

[5]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[6]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[7]

Florian Caro, Bilal Saad, Mazen Saad. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 191-205. doi: 10.3934/dcdss.2014.7.191

[8]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[9]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[10]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[11]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[12]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[13]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[14]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[15]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[16]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[17]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[18]

Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure & Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475

[19]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[20]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (4)
  • Cited by (1)

[Back to Top]