The paper examines the model of traffic flow at an intersection introduced in [
Citation: |
Figure 2.
Constructing the solution of the the Riemann problem, according to the limit Riemann solver (LRS), with two incoming and two outgoing roads. The vector
Figure 3.
Left: an incoming road which is initially free. For
[1] | A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flow on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111. doi: 10.4171/EMSS/2. |
[2] | A. Bressan and K. Nguyen, Conservation law models for traffic flow on a network of roads, Netw. Heter. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255. |
[3] | A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discr. Cont. Dyn. Syst., 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149. |
[4] | G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683. |
[5] | M. Garavello, Conservation laws at a node, in Nonlinear Conservation Laws and Applications (eds A. Bressan, G. Q. Chen, M. Lewicka), The IMA Volumes in Mathematics and its Applications 153 (2011), 293-302. doi: 10.1007/978-1-4419-9554-4_15. |
[6] | M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, Springfield, Mo., 2006. |
[7] | M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. Inst. H. Poincaré, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001. |
[8] | M. Herty, J. P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813. |
[9] | H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289. |
[10] | C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM-COCV, 19 (2013), 129-166. doi: 10.1051/cocv/2012002. |
[11] | P. Le Floch, Explicit formula for scalar non-linear conservation laws with boundary condition, Math. Methods Appl. Sciences, 10 (1988), 265-287. doi: 10.1002/mma.1670100305. |
[12] | M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London: Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. |
[13] | P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. |