
-
Previous Article
Optimal synchronization problem for a multi-agent system
- NHM Home
- This Issue
-
Next Article
Stability estimates for scalar conservation laws with moving flux constraints
Existence of solutions to a boundary value problem for a phase transition traffic model
Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy |
We consider the initial boundary value problem for the phase transition traffic model introduced in [
References:
[1] |
D. Amadori,
Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[2] |
D. Amadori and R. M. Colombo,
Continuous dependence for 2×2 conservation laws with boundary, J. Differential Equations, 138 (1997), 229-266.
doi: 10.1006/jdeq.1997.3274. |
[3] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[4] |
S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen,
A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.
doi: 10.1137/090754467. |
[5] |
A. Bressan,
Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. |
[6] |
R. M. Colombo,
Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.
doi: 10.1137/S0036139901393184. |
[7] |
R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279-1287. |
[8] |
R. M. Colombo and F. Marcellini,
A mixed ODE-PDE model for vehicular traffic, Mathematical Methods in the Applied Sciences, 38 (2015), 1292-1302.
doi: 10.1002/mma.3146. |
[9] |
R. M. Colombo, F. Marcellini and M. Rascle,
A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.
doi: 10.1137/090752468. |
[10] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[11] |
F. Dubois and P. LeFloch,
Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[12] |
M. Garavello,
Boundary value problem for a phase transition model, Netw. Heterog. Media, 11 (2016), 89-105.
doi: 10.3934/nhm.2016.11.89. |
[13] |
M. Garavello and F. Marcellini, The godunov method for a 2-phase model, preprint, arXiv: 1703.05135. |
[14] |
M. Garavello and F. Marcellini, The riemann problem at a junction for a phase-transition traffic model, Discrete Contin. Dyn. Syst. Ser. A, to appear. |
[15] |
M. Garavello and B. Piccoli,
Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models. |
[16] |
M. Garavello and B. Piccoli,
Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636.
doi: 10.1142/S0219891613500215. |
[17] |
P. Goatin,
The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.
doi: 10.1016/j.mcm.2006.01.016. |
[18] |
H. Holden and N. H. Risebro,
Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015.
doi: 10.1007/978-3-662-47507-2. |
[19] |
J. P. Lebacque, X. Louis, S. Mammar, B. Schnetzlera and H. Haj-Salem,
Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, 346 (2008), 1203-1206.
doi: 10.1016/j.crma.2008.09.024. |
[20] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
F. Marcellini,
Free-congested and micro-macro descriptions of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 543-556.
doi: 10.3934/dcdss.2014.7.543. |
[22] |
P. I. Richards,
Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
H. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |
show all references
References:
[1] |
D. Amadori,
Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42.
doi: 10.1007/PL00001406. |
[2] |
D. Amadori and R. M. Colombo,
Continuous dependence for 2×2 conservation laws with boundary, J. Differential Equations, 138 (1997), 229-266.
doi: 10.1006/jdeq.1997.3274. |
[3] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[4] |
S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen,
A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.
doi: 10.1137/090754467. |
[5] |
A. Bressan,
Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. |
[6] |
R. M. Colombo,
Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.
doi: 10.1137/S0036139901393184. |
[7] |
R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279-1287. |
[8] |
R. M. Colombo and F. Marcellini,
A mixed ODE-PDE model for vehicular traffic, Mathematical Methods in the Applied Sciences, 38 (2015), 1292-1302.
doi: 10.1002/mma.3146. |
[9] |
R. M. Colombo, F. Marcellini and M. Rascle,
A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.
doi: 10.1137/090752468. |
[10] |
C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04048-1. |
[11] |
F. Dubois and P. LeFloch,
Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.
doi: 10.1016/0022-0396(88)90040-X. |
[12] |
M. Garavello,
Boundary value problem for a phase transition model, Netw. Heterog. Media, 11 (2016), 89-105.
doi: 10.3934/nhm.2016.11.89. |
[13] |
M. Garavello and F. Marcellini, The godunov method for a 2-phase model, preprint, arXiv: 1703.05135. |
[14] |
M. Garavello and F. Marcellini, The riemann problem at a junction for a phase-transition traffic model, Discrete Contin. Dyn. Syst. Ser. A, to appear. |
[15] |
M. Garavello and B. Piccoli,
Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models. |
[16] |
M. Garavello and B. Piccoli,
Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636.
doi: 10.1142/S0219891613500215. |
[17] |
P. Goatin,
The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.
doi: 10.1016/j.mcm.2006.01.016. |
[18] |
H. Holden and N. H. Risebro,
Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015.
doi: 10.1007/978-3-662-47507-2. |
[19] |
J. P. Lebacque, X. Louis, S. Mammar, B. Schnetzlera and H. Haj-Salem,
Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, 346 (2008), 1203-1206.
doi: 10.1016/j.crma.2008.09.024. |
[20] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
F. Marcellini,
Free-congested and micro-macro descriptions of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 543-556.
doi: 10.3934/dcdss.2014.7.543. |
[22] |
P. I. Richards,
Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
H. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.
doi: 10.1016/S0191-2615(00)00050-3. |


[1] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[2] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[3] |
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717 |
[4] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[5] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[6] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[7] |
Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51 |
[8] |
Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15 |
[9] |
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871 |
[10] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[11] |
Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203 |
[12] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[13] |
Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073 |
[14] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
[15] |
João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53 |
[16] |
Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154 |
[17] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[18] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
[19] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[20] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]