We consider the initial boundary value problem for the phase transition traffic model introduced in [
Citation: |
[1] | D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406. |
[2] | D. Amadori and R. M. Colombo, Continuous dependence for 2×2 conservation laws with boundary, J. Differential Equations, 138 (1997), 229-266. doi: 10.1006/jdeq.1997.3274. |
[3] | A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic). doi: 10.1137/S0036139997332099. |
[4] | S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467. |
[5] | A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. |
[6] | R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721. doi: 10.1137/S0036139901393184. |
[7] | R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279-1287. |
[8] | R. M. Colombo and F. Marcellini, A mixed ODE-PDE model for vehicular traffic, Mathematical Methods in the Applied Sciences, 38 (2015), 1292-1302. doi: 10.1002/mma.3146. |
[9] | R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468. |
[10] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1. |
[11] | F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X. |
[12] | M. Garavello, Boundary value problem for a phase transition model, Netw. Heterog. Media, 11 (2016), 89-105. doi: 10.3934/nhm.2016.11.89. |
[13] | M. Garavello and F. Marcellini, The godunov method for a 2-phase model, preprint, arXiv: 1703.05135. |
[14] | M. Garavello and F. Marcellini, The riemann problem at a junction for a phase-transition traffic model, Discrete Contin. Dyn. Syst. Ser. A, to appear. |
[15] | M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models. |
[16] | M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636. doi: 10.1142/S0219891613500215. |
[17] | P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303. doi: 10.1016/j.mcm.2006.01.016. |
[18] | H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2. |
[19] | J. P. Lebacque, X. Louis, S. Mammar, B. Schnetzlera and H. Haj-Salem, Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, 346 (2008), 1203-1206. doi: 10.1016/j.crma.2008.09.024. |
[20] | M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. |
[21] | F. Marcellini, Free-congested and micro-macro descriptions of traffic flow, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 543-556. doi: 10.3934/dcdss.2014.7.543. |
[22] | P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. |
[23] | H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3. |