June  2017, 12(2): 277-295. doi: 10.3934/nhm.2017012

Optimal synchronization problem for a multi-agent system

1. 

Department of Mathematical Sciences, Rutgers University -Camden, 311 N. 5th Street Camden, NJ 08102, USA

2. 

Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy

* Corresponding author: Giulia Cavagnari

Received  October 2016 Revised  February 2017 Published  May 2017

In this paper we investigate a time-optimal control problem in the space of positive and finite Borel measures on $\mathbb R^d$, motivated by applications in multi-agent systems. We provide a definition of admissible trajectory in the space of Borel measures in a particular non-isolated context, inspired by the so called optimal logistic problem, where the aim is to assign an initial amount of resources to a mass of agents, depending only on their initial position, in such a way that they can reach the given target with this minimum amount of supplies. We provide some approximation results connecting the microscopical description with the macroscopical one in the mass-preserving setting, we construct an optimal trajectory in the non isolated case and finally we are able to provide a Dynamic Programming Principle.

Citation: Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. Google Scholar

[3]

M. Bernot, V. Caselles and J. -M. Morel, Optimal Transportation Networks -Models and Theory, 1955, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009. Google Scholar

[4]

D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control -the Discrete Time Case, 139, Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Google Scholar

[5]

M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: The planar case, submitted, arXiv: 1610.03839v2.Google Scholar

[6]

R. Brockett and N. Khaneja, On the stochastic control of quantum ensembles, System theory: Modeling, analysis and control (Cambridge, MA, 1999), Kluwer Internat. Ser. Engrg. Comput. Sci., Kluwer Acad. Publ., Boston, MA, 518 (2000), 75-96. doi: 10.1007/978-1-4615-5223-9_6. Google Scholar

[7]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, 207 Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. Google Scholar

[8]

G. ButtazzoC. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976. doi: 10.1137/07070543X. Google Scholar

[9]

G. Cavagnari, Regularity results for a time-optimal control problem in the space of probability measures, Mathematical Control and Related Fields, 7 (2017), 213-233. doi: 10.3934/mcrf.2017007. Google Scholar

[10]

G. Cavagnari and A. Marigonda, Time-optimal control problem in the space of probability measures, Large-scale scientific computing, Lecture Notes in Computer Science, Springer, Cham, 9374 (2015), 109-116. doi: 10.1007/978-3-319-26520-9. Google Scholar

[11]

G. CavagnariA. MarigondaK. T. Nguyen and F. S. Priuli, Generalized control systems in the space of probability measures, Set-Valued and Variational Analysis, 25 (2017), 1-29. doi: 10.1007/s11228-017-0414-y. Google Scholar

[12]

G. Cavagnari, A. Marigonda and G. Orlandi, Hamilton-Jacobi-Bellman equation for a timeoptimal control problem in the space of probability measures, in System Modeling and Optimization. CSMO 2015 (eds. L. Bociu, J. -A. Désidéri and A. Habbal), IFIP Advances in Information and Communication Technology, 494, Springer, Cham, 2016,200-208. doi: 10.1007/978-3-319-55795-3_18. Google Scholar

[13]

G. Cavagnari, A. Marigonda and B. Piccoli, Averaged time-optimal control problem in the space of positive Borel measures, submitted.Google Scholar

[14]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, 12 MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2. Google Scholar

[15]

J. DolbeaultB. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5. Google Scholar

[16]

A. Isidori and C. I. Byrnes, Output regulation of nonlinear systems, IEEE Trans. Automat. Control, 35 (1990), 131-140. doi: 10.1109/9.45168. Google Scholar

[17]

B. Oksendal, Stochastic Differential Equations -an Introduction with Applications, 6th edition, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6. Google Scholar

[18]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition, Universitext, Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5. Google Scholar

[19]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211 (2014), 335-358. doi: 10.1007/s00205-013-0669-x. Google Scholar

[20]

B. Piccoli and F. Rossi, On properties of the Generalized Wasserstein distance, Archive for Rational Mechanics and Analysis, 222 (2016), 1339-1365, arXiv: 1304.7014v3. doi: 10.1007/s00205-016-1026-7. Google Scholar

[21]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719. doi: 10.1137/140996501. Google Scholar

[22]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y. Google Scholar

[23]

R. Tempo, G. Calafiore and F. Dabbene, Randomized Algorithms for Analysis and Control of Uncertain Systems -with Applications, Communications and Control Engineering Series, Springer-Verlag, London, 2013. doi: 10.1007/978-1-4471-4610-0. Google Scholar

[24]

C. Villani, Topics in Optimal Transportation, 58, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016. Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic Controls -Hamiltonian Systems and HJB Equations, 43, Applications of Mathematics (New York), Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. Google Scholar

[3]

M. Bernot, V. Caselles and J. -M. Morel, Optimal Transportation Networks -Models and Theory, 1955, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009. Google Scholar

[4]

D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control -the Discrete Time Case, 139, Mathematics in Science and Engineering, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Google Scholar

[5]

M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: The planar case, submitted, arXiv: 1610.03839v2.Google Scholar

[6]

R. Brockett and N. Khaneja, On the stochastic control of quantum ensembles, System theory: Modeling, analysis and control (Cambridge, MA, 1999), Kluwer Internat. Ser. Engrg. Comput. Sci., Kluwer Acad. Publ., Boston, MA, 518 (2000), 75-96. doi: 10.1007/978-1-4615-5223-9_6. Google Scholar

[7]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, 207 Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. Google Scholar

[8]

G. ButtazzoC. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976. doi: 10.1137/07070543X. Google Scholar

[9]

G. Cavagnari, Regularity results for a time-optimal control problem in the space of probability measures, Mathematical Control and Related Fields, 7 (2017), 213-233. doi: 10.3934/mcrf.2017007. Google Scholar

[10]

G. Cavagnari and A. Marigonda, Time-optimal control problem in the space of probability measures, Large-scale scientific computing, Lecture Notes in Computer Science, Springer, Cham, 9374 (2015), 109-116. doi: 10.1007/978-3-319-26520-9. Google Scholar

[11]

G. CavagnariA. MarigondaK. T. Nguyen and F. S. Priuli, Generalized control systems in the space of probability measures, Set-Valued and Variational Analysis, 25 (2017), 1-29. doi: 10.1007/s11228-017-0414-y. Google Scholar

[12]

G. Cavagnari, A. Marigonda and G. Orlandi, Hamilton-Jacobi-Bellman equation for a timeoptimal control problem in the space of probability measures, in System Modeling and Optimization. CSMO 2015 (eds. L. Bociu, J. -A. Désidéri and A. Habbal), IFIP Advances in Information and Communication Technology, 494, Springer, Cham, 2016,200-208. doi: 10.1007/978-3-319-55795-3_18. Google Scholar

[13]

G. Cavagnari, A. Marigonda and B. Piccoli, Averaged time-optimal control problem in the space of positive Borel measures, submitted.Google Scholar

[14]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, 12 MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2. Google Scholar

[15]

J. DolbeaultB. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5. Google Scholar

[16]

A. Isidori and C. I. Byrnes, Output regulation of nonlinear systems, IEEE Trans. Automat. Control, 35 (1990), 131-140. doi: 10.1109/9.45168. Google Scholar

[17]

B. Oksendal, Stochastic Differential Equations -an Introduction with Applications, 6th edition, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6. Google Scholar

[18]

B. Oksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd edition, Universitext, Springer, Berlin, 2007. doi: 10.1007/978-3-540-69826-5. Google Scholar

[19]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211 (2014), 335-358. doi: 10.1007/s00205-013-0669-x. Google Scholar

[20]

B. Piccoli and F. Rossi, On properties of the Generalized Wasserstein distance, Archive for Rational Mechanics and Analysis, 222 (2016), 1339-1365, arXiv: 1304.7014v3. doi: 10.1007/s00205-016-1026-7. Google Scholar

[21]

B. PiccoliF. Rossi and E. Trélat, Control to flocking of the kinetic Cucker-Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719. doi: 10.1137/140996501. Google Scholar

[22]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y. Google Scholar

[23]

R. Tempo, G. Calafiore and F. Dabbene, Randomized Algorithms for Analysis and Control of Uncertain Systems -with Applications, Communications and Control Engineering Series, Springer-Verlag, London, 2013. doi: 10.1007/978-1-4471-4610-0. Google Scholar

[24]

C. Villani, Topics in Optimal Transportation, 58, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1007/b12016. Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic Controls -Hamiltonian Systems and HJB Equations, 43, Applications of Mathematics (New York), Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3. Google Scholar

[1]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[2]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[3]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[4]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[5]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[6]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[7]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[8]

Piotr Kopacz. A note on time-optimal paths on perturbed spheroid. Journal of Geometric Mechanics, 2018, 10 (2) : 139-172. doi: 10.3934/jgm.2018005

[9]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[10]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[11]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[12]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[13]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[14]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[15]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[16]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[17]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[18]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[19]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192

[20]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (17)
  • HTML views (13)
  • Cited by (0)

[Back to Top]