June  2017, 12(2): 297-317. doi: 10.3934/nhm.2017013

A macroscopic traffic model with phase transitions and local point constraints on the flow

1. 

Gran Sasso Science Institute, Viale F. Crispi 7,67100 L'Aquila, Italy

2. 

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

* Corresponding author: Massimiliano D. Rosini

Received  November 2016 Revised  January 2017 Published  May 2017

In this paper we present a macroscopic phase transition model with a local point constraint on the flow. Its motivation is, for instance, the modelling of the evolution of vehicular traffic along a road with pointlike inhomogeneities characterized by limited capacity, such as speed bumps, traffic lights, construction sites, toll booths, etc. The model accounts for two different phases, according to whether the traffic is low or heavy. Away from the inhomogeneities of the road the traffic is described by a first order model in the free-flow phase and by a second order model in the congested phase. To model the effects of the inhomogeneities we propose two Riemann solvers satisfying the point constraints on the flow.

Citation: Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013
References:
[1]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.   Google Scholar

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, 50 (2016), 1269-1287.  doi: 10.1051/m2an/2015078.  Google Scholar

[3]

B. AndreianovC. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722.  doi: 10.1142/S0218202514500341.  Google Scholar

[4]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.  doi: 10.1142/S0218202516500172.  Google Scholar

[5]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[6]

B. P. AndreianovC. DonadelloU. RazafisonJ. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47.  doi: 10.3934/nhm.2016.11.29.  Google Scholar

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938 (electronic). doi: 10.1137/S0036139997332099.  Google Scholar

[8]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[9]

M. Benyahia and M. D. Rosini, Entropy solutions for a traffic model with phase transitions, Nonlinear Anal., 141 (2016), 167-190.  doi: 10.1016/j.na.2016.04.011.  Google Scholar

[10]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.  doi: 10.1137/090754467.  Google Scholar

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.  Google Scholar

[12]

C. Cancés and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060.  doi: 10.1137/110836912.  Google Scholar

[13]

C. Chalons and P. Goatin, Computing phase transitions arising in traffic flow modeling, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008,559–566. doi: 10.1007/978-3-540-75712-2_54.  Google Scholar

[14]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221.  doi: 10.4171/IFB/186.  Google Scholar

[15]

C. ChalonsP. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463.  doi: 10.3934/nhm.2013.8.433.  Google Scholar

[16]

R. M. Colombo and M. Garavello, Phase transition model for traffic at a junction, J. Math. Sci. (N. Y.), 196 (2014), 30-36.  doi: 10.1007/s10958-013-1631-z.  Google Scholar

[17]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708–721 (electronic). doi: 10.1137/S0036139901393184.  Google Scholar

[18]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in Analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279–1287.  Google Scholar

[19]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[20]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.  doi: 10.1142/S0219891610002025.  Google Scholar

[21]

R. M. ColomboP. Goatin and F. S. Priuli, Global well posedness of traffic flow models with phase transitions, Nonlinear Anal., 66 (2007), 2413-2426.  doi: 10.1016/j.na.2006.03.029.  Google Scholar

[22]

R. M. ColomboP. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872.  doi: 10.1051/m2an/2010105.  Google Scholar

[23]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.  doi: 10.1137/090752468.  Google Scholar

[24]

E. Dal Santo, M. D. Rosini, N. Dymski and M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, arXiv preprint, arXiv: 1608.04932. Google Scholar

[25]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[26]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, 2016, URL https://www.math.ntnu.no/conservation/2016/007.pdf. Google Scholar

[27]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, vol. 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016, Conservation laws models.  Google Scholar

[28]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.  doi: 10.1080/03605300500358053.  Google Scholar

[29]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.  Google Scholar

[30]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636.  doi: 10.1142/S0219891613500215.  Google Scholar

[31]

M. Garavello and B. Piccoli, Coupling of microscopic and phase transition models at boundary, Netw. Heterog. Media, 8 (2013), 649-661.  doi: 10.3934/nhm.2013.8.649.  Google Scholar

[32]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[33]

P. Goatin, Traffic flow models with phase transitions on road networks, Netw. Heterog. Media, 4 (2009), 287-301.  doi: 10.3934/nhm.2009.4.287.  Google Scholar

[34]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.  Google Scholar

[35]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345. doi: 10.1098/rspa.1955.0089.  Google Scholar

[36]

R. Mohan and G. Ramadurai, State-of-the art of macroscopic traffic flow modelling, Int. J. Adv. Eng. Sci. Appl. Math., 5 (2013), 158-176.  doi: 10.1007/s12572-013-0087-1.  Google Scholar

[37]

L. Pan and X. Han, The generalized Riemann problem for the Aw-Rascle model with phase transitions, J. Math. Anal. Appl., 389 (2012), 685-693.  doi: 10.1016/j.jmaa.2011.11.081.  Google Scholar

[38]

L. Pan and X. Han, The global solution of the interaction problem for the Aw-Rascle model with phase transitions, Math. Methods Appl. Sci., 35 (2012), 1700-1711.  doi: 10.1002/mma.2552.  Google Scholar

[39]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, 1748–1770. doi: 10.1007/978-1-4614-1806-1_112.  Google Scholar

[40]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[41]

M. D. Rosini, The initial-boundary value problem and the constraint, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, (2013), 63-91.  doi: 10.1007/978-3-319-00155-5_6.  Google Scholar

[42]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00155-5.  Google Scholar

[43]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

show all references

References:
[1]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.   Google Scholar

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, 50 (2016), 1269-1287.  doi: 10.1051/m2an/2015078.  Google Scholar

[3]

B. AndreianovC. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722.  doi: 10.1142/S0218202514500341.  Google Scholar

[4]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.  doi: 10.1142/S0218202516500172.  Google Scholar

[5]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[6]

B. P. AndreianovC. DonadelloU. RazafisonJ. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47.  doi: 10.3934/nhm.2016.11.29.  Google Scholar

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938 (electronic). doi: 10.1137/S0036139997332099.  Google Scholar

[8]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.  doi: 10.1137/090746677.  Google Scholar

[9]

M. Benyahia and M. D. Rosini, Entropy solutions for a traffic model with phase transitions, Nonlinear Anal., 141 (2016), 167-190.  doi: 10.1016/j.na.2016.04.011.  Google Scholar

[10]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.  doi: 10.1137/090754467.  Google Scholar

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.  Google Scholar

[12]

C. Cancés and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060.  doi: 10.1137/110836912.  Google Scholar

[13]

C. Chalons and P. Goatin, Computing phase transitions arising in traffic flow modeling, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008,559–566. doi: 10.1007/978-3-540-75712-2_54.  Google Scholar

[14]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221.  doi: 10.4171/IFB/186.  Google Scholar

[15]

C. ChalonsP. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463.  doi: 10.3934/nhm.2013.8.433.  Google Scholar

[16]

R. M. Colombo and M. Garavello, Phase transition model for traffic at a junction, J. Math. Sci. (N. Y.), 196 (2014), 30-36.  doi: 10.1007/s10958-013-1631-z.  Google Scholar

[17]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708–721 (electronic). doi: 10.1137/S0036139901393184.  Google Scholar

[18]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in Analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279–1287.  Google Scholar

[19]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[20]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.  doi: 10.1142/S0219891610002025.  Google Scholar

[21]

R. M. ColomboP. Goatin and F. S. Priuli, Global well posedness of traffic flow models with phase transitions, Nonlinear Anal., 66 (2007), 2413-2426.  doi: 10.1016/j.na.2006.03.029.  Google Scholar

[22]

R. M. ColomboP. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872.  doi: 10.1051/m2an/2010105.  Google Scholar

[23]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.  doi: 10.1137/090752468.  Google Scholar

[24]

E. Dal Santo, M. D. Rosini, N. Dymski and M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, arXiv preprint, arXiv: 1608.04932. Google Scholar

[25]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[26]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, 2016, URL https://www.math.ntnu.no/conservation/2016/007.pdf. Google Scholar

[27]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, vol. 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016, Conservation laws models.  Google Scholar

[28]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.  doi: 10.1080/03605300500358053.  Google Scholar

[29]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.  Google Scholar

[30]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636.  doi: 10.1142/S0219891613500215.  Google Scholar

[31]

M. Garavello and B. Piccoli, Coupling of microscopic and phase transition models at boundary, Netw. Heterog. Media, 8 (2013), 649-661.  doi: 10.3934/nhm.2013.8.649.  Google Scholar

[32]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[33]

P. Goatin, Traffic flow models with phase transitions on road networks, Netw. Heterog. Media, 4 (2009), 287-301.  doi: 10.3934/nhm.2009.4.287.  Google Scholar

[34]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.  Google Scholar

[35]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345. doi: 10.1098/rspa.1955.0089.  Google Scholar

[36]

R. Mohan and G. Ramadurai, State-of-the art of macroscopic traffic flow modelling, Int. J. Adv. Eng. Sci. Appl. Math., 5 (2013), 158-176.  doi: 10.1007/s12572-013-0087-1.  Google Scholar

[37]

L. Pan and X. Han, The generalized Riemann problem for the Aw-Rascle model with phase transitions, J. Math. Anal. Appl., 389 (2012), 685-693.  doi: 10.1016/j.jmaa.2011.11.081.  Google Scholar

[38]

L. Pan and X. Han, The global solution of the interaction problem for the Aw-Rascle model with phase transitions, Math. Methods Appl. Sci., 35 (2012), 1700-1711.  doi: 10.1002/mma.2552.  Google Scholar

[39]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, 1748–1770. doi: 10.1007/978-1-4614-1806-1_112.  Google Scholar

[40]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[41]

M. D. Rosini, The initial-boundary value problem and the constraint, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, (2013), 63-91.  doi: 10.1007/978-3-319-00155-5_6.  Google Scholar

[42]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00155-5.  Google Scholar

[43]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.  doi: 10.1016/S0191-2615(00)00050-3.  Google Scholar

Figure 1.  Geometrical meaning of the notations used through the paper. In particular, $\Omega_{\rm f} = \Omega_{\rm f}^- \cup \Omega_{\rm f}^+$ and $\Omega_{\rm c}$ are the free-flow and congested domains, respectively; $V_{\rm f}^+$ and $V_{\rm f}^-$ are the maximal and minimal speeds in the free-flow phase, respectively, and $V_{\rm c}$ is the maximal speed in the congested phase
Figure 2.  Geometrical meaning of the cases (T11a) and (T11b). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 3.  Geometrical meaning of the cases (T12a) and (T12b). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 4.  Geometrical meaning of the cases (T21a), (T21b) and (T22a). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 5.  $(\rho_1, v_1) \doteq \mathcal{R}_1^{\rm c}[u_\ell,u_r]$ and $(\rho_2, v_2) \doteq \mathcal{R}_2^{\rm c}[u_\ell,u_r]$ in the case considered in Example 1.
Figure 6.  The invariant domains described in Proposition 6 and Proposition 9
Figure 7.  $u_1 \doteq \mathcal{R}_1^{\rm c}[u_0,u_0]$ and $u_2 \doteq \mathcal{R}_2^{\rm c}[u_0,u_0]$ in the case considered in Example 2. Above $\hat{u}_1,\check{u}_1$ are given by (T11b) and $\hat{u}_2,\check{u}_2$ by (T21b); we let $w_0 = W(u_0)$, $\check{v}_i = V(\check{u}_i)$, $\hat{w}_2 = W(\hat{u}_2)$, $\check{w}_i = W(\check{u}_i)$
Figure 8.  Notations used in Section 5
Figure 9.  The solutions constructed in Subsection 5.1 on the left and in Subsection 5.2 on the right represented in the $(x,t)$-plane. The red thick curves are phase transitions. In particular, those along $x=0$ are stationary undercompressive phase transitions
Figure 10.  Quantitative representation of density, on the left, and velocity, on the right, corresponding to the solutions constructed in Subsection 5.1 and Subsection 5.2. Recall that the two solutions coincide up to the interaction $i_5$
Figure 11.  Quantitative representation of density, on the left, and velocity, on the right, corresponding to the solution constructed in Subsection 5.2
[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (88)
  • HTML views (56)
  • Cited by (6)

Other articles
by authors

[Back to Top]