[1]
|
N. U. Ahmed, Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space, SIAM J. Control Optim., 21 (1983), 953-957.
doi: 10.1137/0321058.
|
[2]
|
N. U. Ahmed and K. L. Teo, Optimal control of systems governed by a class of nonlinear evolution equations in a reflexive Banach space, Journal of Optimization Theory and Applications, 25 (1978), 57-81.
|
[3]
|
N. U. Ahmed and X. Xiang, Properties of relaxed trajectories of evolution equations and optimal control, SIAM J. Control Optim., 31 (1993), 1135-1142.
doi: 10.1137/0331053.
|
[4]
|
T. D. Austin, The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism, Ann. Appl. Probab., 18 (2008), 1279-1325.
doi: 10.1214/07-AAP494.
|
[5]
|
E. J. Balder, A general denseness result for relaxed control theory, Bull. Austral. Math. Soc., 30 (1984), 463-475.
doi: 10.1017/S0004972700002185.
|
[6]
|
D. Bertsekas and S. Shreve,
Stochastic Optimal Control: The Discrete-Time Case, Academic Press, 1978.
|
[7]
|
P. Billingsley,
Convergence Of Probability Measures, John Wiley & Sons, New York, 1968.
|
[8]
|
E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel and K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity, Nature Neuroscience, 8 (2005), 1263-1268.
doi: 10.1038/nn1525.
|
[9]
|
A. Brandejsky, B. de Saporta and F. Dufour, Numerical methods for the exit time of a Piecewise Deterministic Markov Process, Adv. in Appl. Probab., 44 (2012), 196-225.
doi: 10.1017/S0001867800005504.
|
[10]
|
E. Buckwar and M. Riedler, An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution, J. Math. Biol., 63 (2011), 1051-1093.
doi: 10.1007/s00285-010-0395-z.
|
[11]
|
N. Bäuerle and U. Rieder, Optimal control of Piecewise Deterministic Markov Processes with finite time horizon, Modern Trends of Controlled Stochastic Processes: Theory and Applications, (2010), 144-160.
|
[12]
|
N. Bäuerle and U. Rieder, AMDP algorithms for portfolio optimization problems in pure jump markets, Finance Stoch., 13 (2009), 591-611.
doi: 10.1007/s00780-009-0093-0.
|
[13]
|
N. Bäuerle and U. Rieder,
Markov Decision Processes With Applications To Finance, Springer, Heidelberg, 2011.
|
[14]
|
O. Costa and F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. of Control and Opt., 47 (2008), 1053-1077.
doi: 10.1137/060670109.
|
[15]
|
O. Costa and F. Dufour, Singular perturbation for the discounted continuous control of Piecewise Deterministic Markov Processes, Appl. Math. and Opt., 63 (2011), 357-384.
doi: 10.1007/s00245-010-9124-7.
|
[16]
|
O.L.V. Costa, C.A. B Raymundo, F. Dufour and K. Gonzalez, Optimal stopping with continuous control of piecewise deterministic Markov processes, Stoch. Stoch. Rep., 70 (2000), 41-73.
doi: 10.1080/17442500008834245.
|
[17]
|
A. Crudu, A. Debussche, A. Muller and O. Radulescu, Convergence of stochastic gene networks to hybrid piecewise deterministic processe, Ann. Appl. Prob., 22 (2012), 1822-1859.
doi: 10.1214/11-AAP814.
|
[18]
|
M. H. A. Davis, Piecewise-Deterministic Markov Processes: A general class of non-diffusion stochastic models, J. R. Statist. Soc., 46 (1984), 353-388.
|
[19]
|
M. H. A. Davis,
Markov Models and Optimization, Chapman and Hall, 1993.
doi: 10.1007/978-1-4899-4483-2.
|
[20]
|
B. de Saporta, F. Dufour and H. Zhang,
Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes, Wiley, 2016.
|
[21]
|
J. Diestel and J. J. Uhl,
Vector Measures, American Mathematical Society, Providence, 1977.
|
[22]
|
V. Dumas, F. Guillemin and Ph. Robert, A Markovian analysis of additive-increase multiplicative-decrease algorithms, Adv. in Appl. Probab., 34 (2002), 85-111.
doi: 10.1017/S000186780001140X.
|
[23]
|
N. Dunford and J. T. Schwartz,
Linear Operators. Part Ⅰ: General Theory, Academic Press, New York-London, 1963.
|
[24]
|
K. -J. Engel and R. Nagel,
One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag New York, 2000.
|
[25]
|
M. H. A. Davis, Piecewise deterministic Markov control processes with feedback controls and unbounded costs, Acta Applicandae Mathematicae, 82 (2004), 239-267.
doi: 10.1023/B:ACAP.0000031200.76583.75.
|
[26]
|
R. Gamkrelidze, Principle of Optimal Control Theory Plenum, New York, 1987.
|
[27]
|
A. Genadot and M. Thieullen, Averaging for a fully coupled piecewise deterministic Markov process in infinite dimensions, Adv. in Appl. Probab., 44 (2012), 749-773.
doi: 10.1017/S0001867800005863.
|
[28]
|
D. Goreac and M. Martinez, Algebraic invariance conditions in the study of approximate (null-)controllability of Markov switch processes, Mathematics of Control, Signals, and Systems, 27 (2015), 551-578.
doi: 10.1007/s00498-015-0146-1.
|
[29]
|
R. M. Gray and D. L. Neuhoff, Quantization, IEEE Trans. Inform. Theory, 44 (1998), 2325-2383.
doi: 10.1109/18.720541.
|
[30]
|
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.
|
[31]
|
Q. Hu and W. Yue,
Markov Decision Processes with Their Applications, Springer US, 2008.
|
[32]
|
J. Jacod, Multivariate point processes: Predictable projections, Radon-Nikodym derivatives, representation of martingales, Z. Wahrsag. Verw. Gebiete, 34 (1975), 235-253.
doi: 10.1007/BF00536010.
|
[33]
|
K. Nikolic, N. Grossman, M.S. Grubb, J. Burrone, C. Toumazou and P. Degenaar, Photocycles of Channelrhodopsin-2, Photochemistry and Photobiology, 85 (2009), 400-411.
doi: 10.1111/j.1751-1097.2008.00460.x.
|
[34]
|
K. Nikolic, S. Jarvis, N. Grossman and S. Schultz, Computational models of Optogenetic tools for controlling neural circuits with light, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2013), 5934-5937.
doi: 10.1109/EMBC.2013.6610903.
|
[35]
|
G. Pagès, H. Pham and J. Printemps, Handbook of computational and numerical methods in finance, Birkhäuser Boston, (2004), 253-297.
|
[36]
|
K. Pakdaman, M. Thieullen and G. Wainrib, Reduction of stochastic conductance-based neuron models with time-sacles separation, J. Comput. Neurosci., 32 (2012), 327-346.
doi: 10.1007/s10827-011-0355-7.
|
[37]
|
N. S. Papageorgiou, Properties of the relaxed trajectories of evolution equations and optimal control, SIAM J. Control Optim., 27 (1989), 267-288.
doi: 10.1137/0327014.
|
[38]
|
V. Renault, M. Thieullen and E. Trélat, Minimal time spiking in various ChR2-controlled neuron models, J. Math. Biol., (2017), 1-42.
doi: 10.1007/s00285-017-1101-1.
|
[39]
|
M. Riedler, M. Thieullen and G. Wainrib, Limit theorems for infinite-dimensional Piecewise Deterministic Markov Processes. Applications to stochastic excitable membrane models, Electron. J. Probab., 17 (2012), 1-48.
|
[40]
|
D. Vermes, Optimal control of piecewise deterministic Markov processes, Stochastics. An International Journal of Probability and Stochastic Processes, 14 (1985), 165-207.
doi: 10.1080/17442508508833338.
|
[41]
|
J. Warga, Relaxed variational problem, J. Math. Anal. Appl., 4 (1962), 111-128.
doi: 10.1016/0022-247X(62)90033-1.
|
[42]
|
J. Warga, Necessary conditions for minimum in relaxed variational problems, J. Math. Anal. Appl., 4 (1962), 129-145.
doi: 10.1016/0022-247X(62)90034-3.
|
[43]
|
J. Warga,
Optimal Control of Differential and Functional Equations, Wiley-Interscience, New York, 1972.
|
[44]
|
J. C. Williams and J. Xu et al, Computational optogenetics: Empirically-derived voltage-and light-sensitive Channelrhodopsin-2 model, JPLoS Comput Biol, 9 (2013), e1003220.
doi: 10.1371/journal.pcbi.1003220.
|
[45]
|
L. C. Young,
Lectures on the Calculus of Variations and Optimal Control Theory, W. B. Saunders, Philadelphia, PA, 1969.
|
[46]
|
A. A. Yushkevich, On reducing a jump controllable Markov model to a model with discrete time, Theory Probab. Appl., 25 (1980), 58-69.
doi: 10.1137/1125005.
|