December  2017, 12(4): 525-550. doi: 10.3934/nhm.2017022

Homogenization of stokes system using bloch waves

1. 

Centre de Mathématiques Appliquées, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France

2. 

Centre for Applicable Matematics, Tata Institute of Fundamental Research, Bangalore, India

3. 

Current address: Mathematics Department, IIT-Bombay, Mumbai, India

Received  September 2016 Revised  April 2017 Published  October 2017

In this work, we study the Bloch wave homogenization for the Stokes system with periodic viscosity coefficient. In particular, we obtain the spectral interpretation of the homogenized tensor. The presence of the incompressibility constraint in the model raises new issues linking the homogenized tensor and the Bloch spectral data. The main difficulty is a lack of smoothness for the bottom of the Bloch spectrum, a phenomenon which is not present in the case of the elasticity system. This issue is solved in the present work, completing the homogenization process of the Stokes system via the Bloch wave method.

Citation: Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan. Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12 (4) : 525-550. doi: 10.3934/nhm.2017022
References:
[1]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.

[2]

G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117.  doi: 10.1016/S0045-7825(99)00112-7.

[3]

G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Mat. Pura Appl. (4), 181 (2002), 247-282.  doi: 10.1007/s102310100040.

[4]

G. AllaireY. Capdeboscq and A. Piatnitski, Homogenization and localization with an interface, Indiana Univ. Math. J., 52 (2003), 1413-1446.  doi: 10.1512/iumj.2003.52.2352.

[5]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[6]

G. Allaire, Shape Optimization by the Homogenization Method volume 146 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4684-9286-6.

[7]

G. AllaireC. ConcaL. Friz and J.~H. Ortega, On Bloch waves for the Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 1-28 (electronic). 

[8]

A. Bensoussan, J. -L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co. , Amsterdam-New York, 1978.

[9]

Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, M2AN Math. Model. Numer. Anal., 37 (2003), 227-240.  doi: 10.1051/m2an:2003024.

[10]

H. J. Choe and H. Kim, Homogenization of the non-stationary {S}tokes equations with periodic viscosity, J. Korean Math. Soc., 46 (2009), 1041-1069.  doi: 10.4134/JKMS.2009.46.5.1041.

[11]

C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, volume 38 of RAM: Research in Applied Mathematics, John Wiley & Sons, Ltd. , Chichester; Masson, Paris, 1995.

[12]

C. ConcaR. Orive and M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal., 33 (2002), 1166-1198 (electronic).  doi: 10.1137/S0036141001382200.

[13]

C. Conca and M. Vanninathan, Homogenization of periodic structures via {B}loch decomposition, SIAM J. Appl. Math., 57 (1997), 1639-1659.  doi: 10.1137/S0036139995294743.

[14]

S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators, Asymptot. Anal., 39 (2004), 15-44. 

[15]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[16]

U. Hornung, Homogenization and Porous Media, Springer, New York, 1997. doi: 10.1007/978-1-4612-1920-0.

[17]

R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media, SIAM J. Math. Anal., 22 (1991), 16-33.  doi: 10.1137/0522002.

[18]

J.H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differential Equations, 6 (2001), 987-1023. 

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1978.

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, volume 129 of Springer Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.

[21]

S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of linear elasticity system, ESAIM Control Optim. Calc. Var., 11 (2005), 542-573 (electronic).  doi: 10.1051/cocv:2005018.

[22]

C. Wilcox, Theory of bloch waves, J. Anal. Math., 33 (1978), 146-167.  doi: 10.1007/BF02790171.

show all references

References:
[1]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342.  doi: 10.1017/S0308210500022757.

[2]

G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117.  doi: 10.1016/S0045-7825(99)00112-7.

[3]

G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Mat. Pura Appl. (4), 181 (2002), 247-282.  doi: 10.1007/s102310100040.

[4]

G. AllaireY. Capdeboscq and A. Piatnitski, Homogenization and localization with an interface, Indiana Univ. Math. J., 52 (2003), 1413-1446.  doi: 10.1512/iumj.2003.52.2352.

[5]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[6]

G. Allaire, Shape Optimization by the Homogenization Method volume 146 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4684-9286-6.

[7]

G. AllaireC. ConcaL. Friz and J.~H. Ortega, On Bloch waves for the Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 1-28 (electronic). 

[8]

A. Bensoussan, J. -L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co. , Amsterdam-New York, 1978.

[9]

Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, M2AN Math. Model. Numer. Anal., 37 (2003), 227-240.  doi: 10.1051/m2an:2003024.

[10]

H. J. Choe and H. Kim, Homogenization of the non-stationary {S}tokes equations with periodic viscosity, J. Korean Math. Soc., 46 (2009), 1041-1069.  doi: 10.4134/JKMS.2009.46.5.1041.

[11]

C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures, volume 38 of RAM: Research in Applied Mathematics, John Wiley & Sons, Ltd. , Chichester; Masson, Paris, 1995.

[12]

C. ConcaR. Orive and M. Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal., 33 (2002), 1166-1198 (electronic).  doi: 10.1137/S0036141001382200.

[13]

C. Conca and M. Vanninathan, Homogenization of periodic structures via {B}loch decomposition, SIAM J. Appl. Math., 57 (1997), 1639-1659.  doi: 10.1137/S0036139995294743.

[14]

S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators, Asymptot. Anal., 39 (2004), 15-44. 

[15]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.

[16]

U. Hornung, Homogenization and Porous Media, Springer, New York, 1997. doi: 10.1007/978-1-4612-1920-0.

[17]

R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media, SIAM J. Math. Anal., 22 (1991), 16-33.  doi: 10.1137/0522002.

[18]

J.H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differential Equations, 6 (2001), 987-1023. 

[19]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1978.

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, volume 129 of Springer Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.

[21]

S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of linear elasticity system, ESAIM Control Optim. Calc. Var., 11 (2005), 542-573 (electronic).  doi: 10.1051/cocv:2005018.

[22]

C. Wilcox, Theory of bloch waves, J. Anal. Math., 33 (1978), 146-167.  doi: 10.1007/BF02790171.

[1]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[2]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119

[5]

Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555

[6]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[7]

François Murat, Ali Sili. A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15 (1) : 125-142. doi: 10.3934/nhm.2020006

[8]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic and Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[9]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[10]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[11]

Vsevolod Laptev. Deterministic homogenization for media with barriers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 29-44. doi: 10.3934/dcdss.2015.8.29

[12]

Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127

[13]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[14]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017

[15]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[16]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[17]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[18]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[19]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[20]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (118)
  • HTML views (269)
  • Cited by (1)

[Back to Top]