December  2017, 12(4): 551-590. doi: 10.3934/nhm.2017023

Sharp interface limit in a phase field model of cell motility

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

2. 

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

* Corresponding author: Mykhailo Potomkin, mup20@ucs.psu.edu

Received  March 2017 Revised  August 2017 Published  October 2017

Fund Project: The work of LB was supported by NSF grants DMS-1106666 and DMS-1405769. The work of VR and MP was partially supported by NSF grant DMS-1106666

We consider a phase field model of cell motility introduced in [40] which consists of two coupled parabolic PDEs. We study the asymptotic behavior of solutions in the limit of a small parameter related to the width of the interface (sharp interface limit). We formally derive an equation of motion of the interface, which is mean curvature motion with an additional nonlinear term. In a 1D model parabolic problem we rigorously justify the sharp interface limit. To this end, a special representation of solutions is introduced, which reduces analysis of the system to a single nonlinear PDE that describes the interface velocity. Further stability analysis reveals a qualitative change in the behavior of the system for small and large values of the coupling parameter. Using numerical simulations we also show discontinuities of the interface velocity and hysteresis. Also, in the 1D case we establish nontrivial traveling waves when the coupling parameter is large enough.

Citation: Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks & Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023
References:
[1]

M. Alfaro, Generation, motion and thickness of transition layers for a nonlocal Allen-Cahn equation, Nonlinear Analysis, 72 (2010), 3324-3336.  doi: 10.1016/j.na.2009.12.013.  Google Scholar

[2]

M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound., 16 (2014), 243-268.  doi: 10.4171/IFB/319.  Google Scholar

[3]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[4]

G. Barles and F. D. Lio, A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions, Interfaces Free Bound., 5 (2016), 239-274.  doi: 10.4171/IFB/79.  Google Scholar

[5]

E. BarnhartK. C. LeeG. M. AllenJ. A. Theriot and A. Mogilner, Balance between cellsubstrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes, Proceedings of the National Academy of Sciences, 112 (2015), 5045-5050.  doi: 10.1073/pnas.1417257112.  Google Scholar

[6]

L. BerlyandM. Potomkin and V. Rybalko, Phase-field model of cell motility: Traveling waves and sharp interface limit, Comptes Rendus Mathematique, 354 (2016), 986-992.  doi: 10.1016/j.crma.2016.09.001.  Google Scholar

[7]

K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Mathematical Notes, 20. Princeton University Press, Princeton, N. J. , 1978. i+252 pp.  Google Scholar

[8]

M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume, Mathematical Methods in the Applied Sciences, 34 (2011), 1157-1180.  doi: 10.1002/mma.1426.  Google Scholar

[9]

L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807.  doi: 10.1137/S0036141094279279.  Google Scholar

[10]

X. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term, Nonlinear Analysis: Theory, Methods & Applications, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[11]

X. ChenD. Hilhorst and E. Logak, Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12 (2010), 527-549.  doi: 10.4171/IFB/244.  Google Scholar

[12]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. Ⅰ, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[14]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[15]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. vi+93 pp. doi: 10.1137/1.9781611970180.  Google Scholar

[16]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[17]

D. Golovaty, The volume preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Q. of Appl. Math., 55 (1997), 243-298.  doi: 10.1090/qam/1447577.  Google Scholar

[18]

M. Grayson, The heat equation shrinks embedded plane curves to points, J. Differential Geom., 26 (1987), 285-314.  doi: 10.4310/jdg/1214441371.  Google Scholar

[19]

R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[20]

M. H. Holmes, Introduction to Perturbation Methods, 2nd edition. Texts in Applied Mathematics, 20. Springer, New York, 2013. xviii+436 pp. doi: 10.1007/978-1-4614-5477-9.  Google Scholar

[21]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar

[22]

K. KerenZ. PincusG. M. AllenE. BarnhartG. MarriottA. Mogilner and J. A. Theriot, Mechanism of shape determination in motile cells, Nature, 453 (2008), 475-480.  doi: 10.1038/nature06952.  Google Scholar

[23]

R. KohnF. OttoM. Reznikoff and E. Vanden-Eijden, Action minimization and sharpinterface limits for the stochastic Allen-Cahn equation, Comm. Pure Appl. Math., 60 (2007), 393-438.  doi: 10.1002/cpa.20144.  Google Scholar

[24]

F. D. LioC. I. Kim and D. Slepčev, Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications, Asymptot. Anal., 37 (2004), 257-292.   Google Scholar

[25]

M. MizuharaL. BerlyandV. Rybalko and L. Zhang, On an evolution equation in a cell motility model, Phys. D, 318/319 (2016), 12-25.  doi: 10.1016/j.physd.2015.10.008.  Google Scholar

[26]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230.  Google Scholar

[27]

A. Mogilner, Mathematics of cell motility: Have we got its number?, J. Math. Biol., 58 (2009), 105-134.  doi: 10.1007/s00285-008-0182-2.  Google Scholar

[28]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[29]

F. OttoH. Weber and G. Westdickenberg, Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size, Electron. J. Probab., 19 (2014), 1-76.  doi: 10.1214/EJP.v19-2813.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

J. Prúss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[32]

P. RechoT. Putelat and L. Truskinovsky, Mechanics of motility initiation and motility arrest in crawling cells, J. Mech. Phys. Solids, 84 (2015), 469-505.  doi: 10.1016/j.jmps.2015.08.006.  Google Scholar

[33]

P. Recho and L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells, Phys. Rev. E, 87 (2013), 022720. doi: 10.1103/PhysRevE.87.022720.  Google Scholar

[34]

B. RubinsteinK. Jacobson and A. Mogilner, Multiscale two-dimensional modeling of a motile simple-shaped cell, Multiscale Model. Simul., 3 (2005), 413-439.  doi: 10.1137/04060370X.  Google Scholar

[35]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.  Google Scholar

[36]

J. RubinsteinP. Sternberg and J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.  doi: 10.1137/0149007.  Google Scholar

[37]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. A, 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[38]

D. Shao, W. Rappel and H. Levine, Computational model for cell morphodynamics, Physical Review Letters, 105 (2010), 108104. doi: 10.1103/PhysRevLett.105.108104.  Google Scholar

[39]

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Westview press, 2014, xiii+513 pp. Google Scholar

[40]

F. ZiebertS. Swaminathan and I. S. Aranson, Model for self-polarization and motility of keratocyte fragments, J. R. Soc. Interface, 9 (2011), 1084-1092.  doi: 10.1098/rsif.2011.0433.  Google Scholar

show all references

References:
[1]

M. Alfaro, Generation, motion and thickness of transition layers for a nonlocal Allen-Cahn equation, Nonlinear Analysis, 72 (2010), 3324-3336.  doi: 10.1016/j.na.2009.12.013.  Google Scholar

[2]

M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local, Interfaces Free Bound., 16 (2014), 243-268.  doi: 10.4171/IFB/319.  Google Scholar

[3]

S. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[4]

G. Barles and F. D. Lio, A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions, Interfaces Free Bound., 5 (2016), 239-274.  doi: 10.4171/IFB/79.  Google Scholar

[5]

E. BarnhartK. C. LeeG. M. AllenJ. A. Theriot and A. Mogilner, Balance between cellsubstrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes, Proceedings of the National Academy of Sciences, 112 (2015), 5045-5050.  doi: 10.1073/pnas.1417257112.  Google Scholar

[6]

L. BerlyandM. Potomkin and V. Rybalko, Phase-field model of cell motility: Traveling waves and sharp interface limit, Comptes Rendus Mathematique, 354 (2016), 986-992.  doi: 10.1016/j.crma.2016.09.001.  Google Scholar

[7]

K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Mathematical Notes, 20. Princeton University Press, Princeton, N. J. , 1978. i+252 pp.  Google Scholar

[8]

M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume, Mathematical Methods in the Applied Sciences, 34 (2011), 1157-1180.  doi: 10.1002/mma.1426.  Google Scholar

[9]

L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807.  doi: 10.1137/S0036141094279279.  Google Scholar

[10]

X. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term, Nonlinear Analysis: Theory, Methods & Applications, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[11]

X. ChenD. Hilhorst and E. Logak, Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces Free Bound., 12 (2010), 527-549.  doi: 10.4171/IFB/244.  Google Scholar

[12]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature. Ⅰ, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[14]

L. C. EvansH. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.  doi: 10.1002/cpa.3160450903.  Google Scholar

[15]

P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. vi+93 pp. doi: 10.1137/1.9781611970180.  Google Scholar

[16]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.  doi: 10.1090/S0002-9947-1978-0461206-1.  Google Scholar

[17]

D. Golovaty, The volume preserving motion by mean curvature as an asymptotic limit of reaction-diffusion equations, Q. of Appl. Math., 55 (1997), 243-298.  doi: 10.1090/qam/1447577.  Google Scholar

[18]

M. Grayson, The heat equation shrinks embedded plane curves to points, J. Differential Geom., 26 (1987), 285-314.  doi: 10.4310/jdg/1214441371.  Google Scholar

[19]

R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306.  doi: 10.4310/jdg/1214436922.  Google Scholar

[20]

M. H. Holmes, Introduction to Perturbation Methods, 2nd edition. Texts in Applied Mathematics, 20. Springer, New York, 2013. xviii+436 pp. doi: 10.1007/978-1-4614-5477-9.  Google Scholar

[21]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.  doi: 10.4310/jdg/1214438998.  Google Scholar

[22]

K. KerenZ. PincusG. M. AllenE. BarnhartG. MarriottA. Mogilner and J. A. Theriot, Mechanism of shape determination in motile cells, Nature, 453 (2008), 475-480.  doi: 10.1038/nature06952.  Google Scholar

[23]

R. KohnF. OttoM. Reznikoff and E. Vanden-Eijden, Action minimization and sharpinterface limits for the stochastic Allen-Cahn equation, Comm. Pure Appl. Math., 60 (2007), 393-438.  doi: 10.1002/cpa.20144.  Google Scholar

[24]

F. D. LioC. I. Kim and D. Slepčev, Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications, Asymptot. Anal., 37 (2004), 257-292.   Google Scholar

[25]

M. MizuharaL. BerlyandV. Rybalko and L. Zhang, On an evolution equation in a cell motility model, Phys. D, 318/319 (2016), 12-25.  doi: 10.1016/j.physd.2015.10.008.  Google Scholar

[26]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230.  Google Scholar

[27]

A. Mogilner, Mathematics of cell motility: Have we got its number?, J. Math. Biol., 58 (2009), 105-134.  doi: 10.1007/s00285-008-0182-2.  Google Scholar

[28]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[29]

F. OttoH. Weber and G. Westdickenberg, Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size, Electron. J. Probab., 19 (2014), 1-76.  doi: 10.1214/EJP.v19-2813.  Google Scholar

[30]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[31]

J. Prúss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[32]

P. RechoT. Putelat and L. Truskinovsky, Mechanics of motility initiation and motility arrest in crawling cells, J. Mech. Phys. Solids, 84 (2015), 469-505.  doi: 10.1016/j.jmps.2015.08.006.  Google Scholar

[33]

P. Recho and L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells, Phys. Rev. E, 87 (2013), 022720. doi: 10.1103/PhysRevE.87.022720.  Google Scholar

[34]

B. RubinsteinK. Jacobson and A. Mogilner, Multiscale two-dimensional modeling of a motile simple-shaped cell, Multiscale Model. Simul., 3 (2005), 413-439.  doi: 10.1137/04060370X.  Google Scholar

[35]

J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264.  doi: 10.1093/imamat/48.3.249.  Google Scholar

[36]

J. RubinsteinP. Sternberg and J. B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.  doi: 10.1137/0149007.  Google Scholar

[37]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. A, 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[38]

D. Shao, W. Rappel and H. Levine, Computational model for cell morphodynamics, Physical Review Letters, 105 (2010), 108104. doi: 10.1103/PhysRevLett.105.108104.  Google Scholar

[39]

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Westview press, 2014, xiii+513 pp. Google Scholar

[40]

F. ZiebertS. Swaminathan and I. S. Aranson, Model for self-polarization and motility of keratocyte fragments, J. R. Soc. Interface, 9 (2011), 1084-1092.  doi: 10.1098/rsif.2011.0433.  Google Scholar

Figure 1.  Illustration of the ansatz (34). Function $\rho_\varepsilon$ decays to a non-zero constant of the order $\varepsilon$ for $x\to\pm\infty$ and to a constant slightly different from 1 for $-a\leq x\leq a$ (solid). Dashed line represents the limiting profile, which is the characteristic function of $(-a, a)$
Figure 2.  Left: $\Phi_\beta(V)$ for $\beta=150$ and $W_{\text{as}}(\rho)=\frac{1}{4}\rho^2(1+\rho^2)(\rho-1)^2$, positive slope illustrates $\Phi'_\beta(0)>0$; Right: $\theta_0$, standing wave for the Allen-Cahn equation for $W_{\text{sym}}(\rho)=\frac{1}{4}\rho^2(\rho-1)^2$ (dashed) and $W_{\text{as}}(\rho)=\frac{1}{4}\rho^2(1+\rho^2)(\rho-1)^2$ (solid)
Figure 3.  Left: Plot of function $\Phi_\beta(V)$ for $\beta =150>\beta_{\text{cr}}$; {\it Right}: Plot $c_0V- \Phi_\beta(V)$ for $\beta=150$ vs $F$. For $-F=1.5$ there is one intersection ((61) has one root). For each $-F=1.762$ and $-F=2.264$ there are two intersections ((61) has two roots). For $-F=2$ there are three intersections ((61) has three roots)
Figure 4.  Sketch of the function $F(V)=-c_0V+\Phi_\beta (V)$; $F(V)$ has one local minimum, $F_{\text{min}}=F(V_{\text{min}})$, and one local maximum, $F_{\text{max}}=F(V_{\text{max}})$. Left: Until $F<F_{\max}$ we stay on the left branch. When $F$ exceeds $F_{\max}$ we jump on the right branch; Right: Until $F>F_{\min}$ we stay on the right branch; When $F$ becomes less than $F_{\min}$ we jump on the left branch. Red arrows on both figures illustrate jumps in velocities.
Figure 5.  Hysteresis loop in the problem of cell motility. Simulations of $V=V(F)$ Left: (61) Jumping from the left to the right branches and back; Right: PDE system (57)-(58). On both figures arrows show in what direction the system $(V(t), F(t))$ evolves as time $t$ grows; red curve is for $F_{\uparrow}(t)$, blue curve is for $F_{\downarrow}(t)$
[1]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[2]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[3]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[4]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[5]

Matthew S. Mizuhara, Peng Zhang. Uniqueness and traveling waves in a cell motility model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2811-2835. doi: 10.3934/dcdsb.2018315

[6]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

[7]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[8]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[9]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[10]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[11]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[12]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[13]

John W. Barrett, Harald Garcke, Robert Nürnberg. On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 1-14. doi: 10.3934/dcdss.2008.1.1

[14]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[15]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[16]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[17]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[18]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[19]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[20]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (36)
  • HTML views (145)
  • Cited by (0)

[Back to Top]