[1]
|
A. Abdulle and G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems, Mathematics of Computation, 83 (2014), 513-536.
doi: 10.1090/S0025-5718-2013-02758-5.
|
[2]
|
G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, SIAM J. Multiscale Modeling and Simulation, 4 (2005), 790-812.
doi: 10.1137/040611239.
|
[3]
|
G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.
doi: 10.1137/0523084.
|
[4]
|
T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42 (2004), 576-598 (electronic).
doi: 10.1137/S0036142902406636.
|
[5]
|
M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339 (2004), 667-672.
doi: 10.1016/j.crma.2004.08.006.
|
[6]
|
Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, 197 (2007), 173-201.
doi: 10.1016/j.cma.2007.07.016.
|
[7]
|
L. Berlyand, Y. Gorb and A. Novikov, Discrete network approximation for highly-packed composites with irregular geometry in three dimensions, In Multiscale Methids in Science and Engineering, Spring, 44 (2005), 21-57.
doi: 10.1007/3-540-26444-2_2.
|
[8]
|
L. Berlyand, A. G. Kolpakov and A. Novikov,
Introduction to the Network Approximation Method for Materials Modeling, Number 148. Cambridge University Press, 2013.
|
[9]
|
L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry, SIAM Journal on Mathematical Analysis, 34 (2002), 385-408.
doi: 10.1137/S0036141001397144.
|
[10]
|
L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Archive for Rational Mechanics and Analysis, 198 (2010), 677-721.
doi: 10.1007/s00205-010-0302-1.
|
[11]
|
V. M. Calo, Y. Efendiev, J. Galvis and M. Ghommem, Multiscale empirical interpolation for solving nonlinear PDEs, Journal of Computational Physics, 278 (2014), 204-220.
doi: 10.1016/j.jcp.2014.07.052.
|
[12]
|
V. M. Calo, Y. Efendiev, J. Galvis and G. Li, Randomized oversampling for generalized multiscale finite element methods, Multiscale Model. Simul., 14 (2016), 482-501.
doi: 10.1137/140988826.
|
[13]
|
V. ChiadóPiat and A. Defranceschi, Homogenization of monotone operators, Nonlinear Analysis: Theory, Methods & Applications, 14 (1990), 717-732.
doi: 10.1016/0362-546X(90)90102-M.
|
[14]
|
C.-C. Chu, I. G. Graham and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 79 (2010), 1915-1955.
doi: 10.1090/S0025-5718-2010-02372-5.
|
[15]
|
E. Chung, B. Cockburn and G. Fu, The staggered dg method is the limit of a hybridizable dg method, SIAM Journal on Numerical Analysis, 52 (2014), 915-932.
doi: 10.1137/13091573X.
|
[16]
|
E. T. Chung, Y. Efendiev and W. T. Leung, An adaptive generalized multiscale discontinuous galerkin method (GMsDGM) for high-contrast flow problems arXiv preprint, arXiv: 1409.3474, 2014.
doi: 10.1016/j.jcp.2014.05.007.
|
[17]
|
E. T. Chung, Y. Efendiev and W. T. Leung, Residual-driven online generalized multiscale finite element methods, J. Comput. Phys., 302 (2015), 176-190.
doi: 10.1016/j.jcp.2015.07.068.
|
[18]
|
E. T. Chung, Y. Efendiev and G. Li, An adaptive GMsFEM for high-contrast flow problems, Journal of Computational Physics, 273 (2014), 54-76.
doi: 10.1016/j.jcp.2014.05.007.
|
[19]
|
P. G. Ciarlet,
The Finite Element Method for Elliptic Problems, volume 40. Siam, 2002.
doi: 10.1137/1.9780898719208.
|
[20]
|
B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, 47 (2009), 1319-1365.
doi: 10.1137/070706616.
|
[21]
|
L. J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27 (1991), 699-708.
doi: 10.1029/91WR00107.
|
[22]
|
W. E and B. Engquist, Heterogeneous multiscale methods, Comm. Math. Sci., 1 (2003), 87-132.
doi: 10.4310/CMS.2003.v1.n1.a8.
|
[23]
|
Y. Efendiev and J. Galvis, Coarse-grid multiscale model reduction techniques for flows in heterogeneous media and applications, Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, 83 (2012), 97-125.
doi: 10.1007/978-3-642-22061-6_4.
|
[24]
|
Y. Efendiev, J. Galvis and T. Hou, Generalized multiscale finite element methods, Journal of Computational Physics, 251 (2013), 116-135.
doi: 10.1016/j.jcp.2013.04.045.
|
[25]
|
Y. Efendiev, J. Galvis, S. Ki Kang and R. D. Lazarov, Robust multiscale iterative solvers for nonlinear flows in highly heterogeneous media, Numer. Math. Theory Methods Appl., 5 (2012), 359-383.
doi: 10.4208/nmtma.2012.m1112.
|
[26]
|
Y. Efendiev, J. Galvis, G. Li and M. Presho, Generalized multiscale finite element methods. Oversampling strategies, International Journal for Multiscale Computational Engineering, accepted, 12 (2014), 465-484.
doi: 10.1615/IntJMultCompEng.2014007646.
|
[27]
|
Y. Efendiev, J. Galvis and X. H. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions, Journal of Computational Physics, 230 (2011), 937-955.
doi: 10.1016/j.jcp.2010.09.026.
|
[28]
|
Y. Efendiev and T. Hou,
Multiscale Finite Element Methods: Theory and Applications, Springer, 2009.
|
[29]
|
Y. Efendiev, T. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications, Comm. Math. Sci., 2 (2004), 553-589.
doi: 10.4310/CMS.2004.v2.n4.a2.
|
[30]
|
Y. Efendiev and A. Pankov, Numerical homogenization and correctors for nonlinear elliptic equations, SIAM J. Appl. Math., 65 (2004), 43-68.
doi: 10.1137/S0036139903424886.
|
[31]
|
Y. Efendiev, J. Galvis, M Presho and J. Zhou, A multiscale enrichment procedure for nonlinear monotone operators, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 475-491.
doi: 10.1051/m2an/2013116.
|
[32]
|
Y. Efendiev, R. Lazarov, M. Moon and K. Shi, A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems, Computer Methods in Applied Mechanics and Engineering, 292 (2015), 243-256.
doi: 10.1016/j.cma.2014.09.036.
|
[33]
|
J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 8 (2010), 1461-1483.
doi: 10.1137/090751190.
|
[34]
|
J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., 8 (2010), 1621-1644.
doi: 10.1137/100790112.
|
[35]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problémes de dirichlet non linéaires, Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 9 (1975), 41-76.
|
[36]
|
P. Henning, Heterogeneous multiscale finite element methods for advection-diffusion and nonlinear elliptic multiscale problems,
Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Mathematik und Informatik (Diss.). ii, (2011), page 63.
|
[37]
|
P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems, Discrete and Continuous Dynamical Systems-Serie S. Special Issue on Numerical Methods based on Homogenization and Two-Scale Convergence, 8 (2015), 119-150.
doi: 10.3934/dcdss.2015.8.119.
|
[38]
|
T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, 127 (1995), 387-401.
doi: 10.1016/0045-7825(95)00844-9.
|
[39]
|
T. J. R. Hughes, G. Feijoo, L. Mazzei and J. Quincy, The variational multiscale methoda paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3-24.
doi: 10.1016/S0045-7825(98)00079-6.
|
[40]
|
T. J. R. Hughes and G. Sangalli, Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and stabilized methods, SIAM Journal on Numerical Analysis, 45 (2007), 539-557.
doi: 10.1137/050645646.
|
[41]
|
V. V. Jikov, S. M. Kozlov and O. A. Oleinik,
Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5.
|
[42]
|
J. L. Lions, D. Lukkassen, L. E. Persson and P. Wall, Reiterated homogenization of nonlinear monotone operators, Chinese Annals of Mathematics, 22 (2001), 1-12.
doi: 10.1142/S0252959901000024.
|
[43]
|
P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, Journal of the American Mathematical Society, 18 (2005), 121-156.
doi: 10.1090/S0894-0347-04-00469-2.
|
[44]
|
G. Nguetseng and H. Nnang, Homogenization of nonlinear monotone operators beyond the periodic setting, Electr. J. of Diff. Eqns, 36 (2003), 1-24.
|
[45]
|
H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 517-552.
doi: 10.1051/m2an/2013118.
|
[46]
|
A. A. Pankov,
G-convergence and Homogenization of Nonlinear Partial Differential Operators, volume 422. Mathematics and its Applications, 422. Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-94-015-8957-4.
|
[47]
|
G. Papanicolau, A. Bensoussan and J. -L. Lions,
Asymptotic Analysis for Periodic Structures, Elsevier, 1978.
|
[48]
|
M. Presho and S. Ye, Reduced-order multiscale modeling of nonlinear p-Laplacian flows in high-contrast media, Computational Geosciences, 19 (2015), 921-932.
doi: 10.1007/s10596-015-9504-9.
|
[49]
|
X. H. Wu, Y. Efendiev and T. Y. Hou, Analysis of upscaling absolute permeability, Discrete and Continuous Dynamical Systems, Series B., 2 (2002), 185-204.
doi: 10.3934/dcdsb.2002.2.185.
|
[50]
|
E. Zeidler,
Nonlinear Functional Analysis and Its Applications: Ⅲ: Variational Methods and Optimization, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-5020-3.
|