\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Lax-Oleinik semigroup on graphs

  • * Corresponding author:Morgado Héctor Sánchez

    * Corresponding author:Morgado Héctor Sánchez
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider Tonelli Lagrangians on a graph, define weak KAM solutions, which happen to be the fixed points of the Lax-Oleinik semi-group, and identify their uniqueness set as the Aubry set, giving a representation formula. Our main result is the long time convergence of the Lax Oleinik semi-group. It follows that weak KAM solutions are viscosity solutions of the Hamilton-Jacobi equation [3, 4], and in the case of Hamiltonians called of eikonal type in [3], we prove that the converse holds.

    Mathematics Subject Classification: Primary: 35R02, 35F21; Secondary: 35Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Y. AchdouF. CamilliA. Cutrí and N. Tchou, Hamilton-Jacobi equations constrained on networks, Nonlinear Differ. Equ. Appl., 20 (2013), 413-445.  doi: 10.1007/s00030-012-0158-1.
    [2] G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in ${\mathbb{R}^n}$, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 710-739.  doi: 10.1051/cocv/2012030.
    [3] F. Camilli and D. Schieborn, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equatons, 46 (2013), 671-686.  doi: 10.1007/s00526-012-0498-z.
    [4] F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks, J. Math. Anal. Appl., 407 (2013), 112-118.  doi: 10.1016/j.jmaa.2013.05.015.
    [5] A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.  doi: 10.1137/050621955.
    [6] A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sr. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.
    [7] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, To appear in Cambridge Studies in Advanced Mathematics.
    [8] A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasi-convex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.  doi: 10.1007/s00526-004-0271-z.
    [9] C. Imbert and R. Monneau, Flux-limited Solutions for Quasi-Convex Hamilton-Jacobi Equations on Networks, arXiv: 1306.2428
    [10] H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean nspace, Anal. Non Linéaire, 25 (2008), 231-266.  doi: 10.1016/j.anihpc.2006.09.002.
    [11] J. M. Roquejoffre, Convergence to steady states or periodic solutions in a class of HamiltonJacobi equations, J. Math. Pures Appl., 80 (2001), 85-104.  doi: 10.1016/S0021-7824(00)01183-1.
  • 加载中
SHARE

Article Metrics

HTML views(1547) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return