
-
Previous Article
Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces
- NHM Home
- This Issue
-
Next Article
The Lax-Oleinik semigroup on graphs
Capacity drop and traffic control for a second order traffic model
1. | Department of Mathematics, University of Mannheim, 68131 Mannheim, Germany |
2. | Inria Sophia Antipolis -Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 06902 Sophia Antipolis Cedex, France |
In this paper, we illustrate how second order traffic flow models, in our case the Aw-Rascle equations, can be used to reproduce empirical observations such as the capacity drop at merges and solve related optimal control problems. To this aim, we propose a model for on-ramp junctions and derive suitable coupling conditions. These are associated to the first order Godunov scheme to numerically study the well-known capacity drop effect, where the outflow of the system is significantly below the expected maximum. Control issues such as speed and ramp meter control are also addressed in a first-discretize-then-optimize framework.
References:
[1] |
A. Aw, A. Klar, T. Materne and M. Rascle,
Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[2] |
A. Aw and M. Rascle,
Resurrection of ''second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[3] |
F. Berthelin, P. Degond, M. Delitala and M. Rascle,
A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185-220.
doi: 10.1007/s00205-007-0061-9. |
[4] |
C. Chalons and P. Goatin,
Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Communications in Mathematical Sciences, 5 (2007), 533-551.
doi: 10.4310/CMS.2007.v5.n3.a2. |
[5] |
M.L. DelleMonache, B. Piccoli and F. Rossi,
Traffic Regulation via Controlled Speed Limit, SIAM Journal on Control and Optimization, 55 (2017), 2936-2958.
doi: 10.1137/16M1066038. |
[6] |
M.L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A.M. Bayen,
A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.
doi: 10.1137/130908993. |
[7] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Networks and Heterogeneous Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[8] |
M. Garavello and B. Piccoli,
Traffic flow on a road network using the Aw-Rascle model, Communications in Partial Differential Equations, 31 (2006), 243-275.
doi: 10.1080/03605300500358053. |
[9] |
M. Garavello and B. Piccoli, Traffic Flow on Networks, Springfield, MO: American Institute of Mathematical Sciences (AIMS), 2006. |
[10] |
P. Goatin,
The Aw-Rascle vehicular traffic flow model with phase transitions, Mathematical and Computer Modelling, 44 (2006), 287-303.
doi: 10.1016/j.mcm.2006.01.016. |
[11] |
P. Goatin, S. Göttlich and O. Kolb,
Speed limit and ramp meter control for traffic flow networks, Engineering Optimization, 48 (2016), 1121-1144.
doi: 10.1080/0305215X.2015.1097099. |
[12] |
J.M. Greenberg,
Extensions and amplifications of a traffic model of Aw and Rascle, SIAM Journal on Applied Mathematics, 62 (2001), 729-745.
doi: 10.1137/S0036139900378657. |
[13] |
B. Haut and G. Bastin,
A second order model of road junctions in fluid models of traffic networks, Networks and Heterogeneous Media, 2 (2007), 227-253.
doi: 10.3934/nhm.2007.2.227. |
[14] |
A. Hegyi, B.D. Schutter and H. Hellendoorn,
Optimal coordination of variable speed limits to suppress shock waves, IEEE Transactions on Intelligent Transportation Systems, 6 (2005), 102-112.
doi: 10.1109/CDC.2003.1273043. |
[15] |
M. Herty, S. Moutari and M. Rascle,
Optimization criteria for modelling intersections of vehicular traffic flow, Networks and Heterogeneous Media, 1 (2006), 275-294.
doi: 10.3934/nhm.2006.1.275. |
[16] |
M. Herty and M. Rascle,
Coupling conditions for a class of second-order models for traffic flow, SIAM Journal on Mathematical Analysis, 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[17] |
W.-L. Jin, Q.-J. Gan and J.-P. Lebacque,
A kinematic wave theory of capacity drop, Transportation Research Part B: Methodological, 81 (2015), 316-329.
doi: 10.1016/j.trb.2015.07.020. |
[18] |
W. Jin and H. Zhang,
On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.
doi: 10.1016/S0191-2615(02)00026-7. |
[19] |
O. Kolb, Simulation and Optimization of Gas and Water Supply Networks, PhD thesis, TU Darmstadt, 2011. Google Scholar |
[20] |
O. Kolb and J. Lang, Simulation and continuous optimization, in "Mathematical Optimization of Water Networks" (eds. A. Martin, K. Klamroth, J. Lang, G. Leugering, A. Morsi, M. Oberlack, M. Ostrowski and R. Rosen), Springer Basel, 162 (2012), 17-33.
doi: 10.1007/978-3-0348-0436-3_2. |
[21] |
L. Leclercq, V.L. Knoop, F. Marczak and S.P. Hoogendoorn,
Capacity drops at merges: New analytical investigations, Transportation Research Part C: Emerging Technologies, 62 (2016), 171-181.
doi: 10.1109/ITSC.2014.6957839. |
[22] |
M.J. Lighthill and G.B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Royal Society of London Proceedings Series A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[23] |
C. Parzani and C. Buisson,
Second-order model and capacity drop at merge, Transportation Research Record: Journal of the Transportation Research Board, 2315 (2012), 25-34.
doi: 10.3141/2315-03. |
[24] |
B. Piccoli, K. Han, T.L. Friesz, T. Yao and J. Tang,
Second-order models and traffic data from mobile sensors, Transportation Research Part C: Emerging Technologies, 52 (2015), 32-56.
doi: 10.1016/j.trc.2014.12.013. |
[25] |
J. Reilly, S. Samaranayake, M.L. DelleMonache, W. Krichene, P. Goatin and A.M. Bayen,
Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, Journal of Optimization Theory and Applications, 167 (2015), 733-760.
doi: 10.1007/s10957-015-0749-1. |
[26] |
F. Siebel, W. Mauser, S. Moutari and M. Rascle,
Balanced vehicular traffic at a bottleneck, Mathematical and Computer Modelling, 49 (2009), 689-702.
doi: 10.1016/j.mcm.2008.01.006. |
[27] |
P. Spellucci,
A new technique for inconsistent QP problems in the SQP method, Mathematical Methods of Operations Research, 47 (1998), 355-400.
doi: 10.1007/BF01198402. |
[28] |
P. Spellucci,
An SQP method for general nonlinear programs using only equality constrained subproblems, Mathematical Programming, 82 (1998), 413-448.
doi: 10.1007/BF01580078. |
[29] |
A. Srivastava and N. Geroliminis,
Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model, Transportation Research Part C: Emerging Technologies, 30 (2013), 161-177.
doi: 10.1016/j.trc.2013.02.006. |
[30] |
M. Treiber and A. Kesting, Traffic Flow Dynamics, Data, models and simulation, Translated by Treiber and Christian Thiemann, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-32460-4. |
show all references
References:
[1] |
A. Aw, A. Klar, T. Materne and M. Rascle,
Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[2] |
A. Aw and M. Rascle,
Resurrection of ''second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[3] |
F. Berthelin, P. Degond, M. Delitala and M. Rascle,
A model for the formation and evolution of traffic jams, Archive for Rational Mechanics and Analysis, 187 (2008), 185-220.
doi: 10.1007/s00205-007-0061-9. |
[4] |
C. Chalons and P. Goatin,
Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Communications in Mathematical Sciences, 5 (2007), 533-551.
doi: 10.4310/CMS.2007.v5.n3.a2. |
[5] |
M.L. DelleMonache, B. Piccoli and F. Rossi,
Traffic Regulation via Controlled Speed Limit, SIAM Journal on Control and Optimization, 55 (2017), 2936-2958.
doi: 10.1137/16M1066038. |
[6] |
M.L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin and A.M. Bayen,
A PDE-ODE model for a junction with ramp buffer, SIAM Journal on Applied Mathematics, 74 (2014), 22-39.
doi: 10.1137/130908993. |
[7] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Networks and Heterogeneous Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[8] |
M. Garavello and B. Piccoli,
Traffic flow on a road network using the Aw-Rascle model, Communications in Partial Differential Equations, 31 (2006), 243-275.
doi: 10.1080/03605300500358053. |
[9] |
M. Garavello and B. Piccoli, Traffic Flow on Networks, Springfield, MO: American Institute of Mathematical Sciences (AIMS), 2006. |
[10] |
P. Goatin,
The Aw-Rascle vehicular traffic flow model with phase transitions, Mathematical and Computer Modelling, 44 (2006), 287-303.
doi: 10.1016/j.mcm.2006.01.016. |
[11] |
P. Goatin, S. Göttlich and O. Kolb,
Speed limit and ramp meter control for traffic flow networks, Engineering Optimization, 48 (2016), 1121-1144.
doi: 10.1080/0305215X.2015.1097099. |
[12] |
J.M. Greenberg,
Extensions and amplifications of a traffic model of Aw and Rascle, SIAM Journal on Applied Mathematics, 62 (2001), 729-745.
doi: 10.1137/S0036139900378657. |
[13] |
B. Haut and G. Bastin,
A second order model of road junctions in fluid models of traffic networks, Networks and Heterogeneous Media, 2 (2007), 227-253.
doi: 10.3934/nhm.2007.2.227. |
[14] |
A. Hegyi, B.D. Schutter and H. Hellendoorn,
Optimal coordination of variable speed limits to suppress shock waves, IEEE Transactions on Intelligent Transportation Systems, 6 (2005), 102-112.
doi: 10.1109/CDC.2003.1273043. |
[15] |
M. Herty, S. Moutari and M. Rascle,
Optimization criteria for modelling intersections of vehicular traffic flow, Networks and Heterogeneous Media, 1 (2006), 275-294.
doi: 10.3934/nhm.2006.1.275. |
[16] |
M. Herty and M. Rascle,
Coupling conditions for a class of second-order models for traffic flow, SIAM Journal on Mathematical Analysis, 38 (2006), 595-616.
doi: 10.1137/05062617X. |
[17] |
W.-L. Jin, Q.-J. Gan and J.-P. Lebacque,
A kinematic wave theory of capacity drop, Transportation Research Part B: Methodological, 81 (2015), 316-329.
doi: 10.1016/j.trb.2015.07.020. |
[18] |
W. Jin and H. Zhang,
On the distribution schemes for determining flows through a merge, Transportation Research Part B: Methodological, 37 (2003), 521-540.
doi: 10.1016/S0191-2615(02)00026-7. |
[19] |
O. Kolb, Simulation and Optimization of Gas and Water Supply Networks, PhD thesis, TU Darmstadt, 2011. Google Scholar |
[20] |
O. Kolb and J. Lang, Simulation and continuous optimization, in "Mathematical Optimization of Water Networks" (eds. A. Martin, K. Klamroth, J. Lang, G. Leugering, A. Morsi, M. Oberlack, M. Ostrowski and R. Rosen), Springer Basel, 162 (2012), 17-33.
doi: 10.1007/978-3-0348-0436-3_2. |
[21] |
L. Leclercq, V.L. Knoop, F. Marczak and S.P. Hoogendoorn,
Capacity drops at merges: New analytical investigations, Transportation Research Part C: Emerging Technologies, 62 (2016), 171-181.
doi: 10.1109/ITSC.2014.6957839. |
[22] |
M.J. Lighthill and G.B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Royal Society of London Proceedings Series A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[23] |
C. Parzani and C. Buisson,
Second-order model and capacity drop at merge, Transportation Research Record: Journal of the Transportation Research Board, 2315 (2012), 25-34.
doi: 10.3141/2315-03. |
[24] |
B. Piccoli, K. Han, T.L. Friesz, T. Yao and J. Tang,
Second-order models and traffic data from mobile sensors, Transportation Research Part C: Emerging Technologies, 52 (2015), 32-56.
doi: 10.1016/j.trc.2014.12.013. |
[25] |
J. Reilly, S. Samaranayake, M.L. DelleMonache, W. Krichene, P. Goatin and A.M. Bayen,
Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, Journal of Optimization Theory and Applications, 167 (2015), 733-760.
doi: 10.1007/s10957-015-0749-1. |
[26] |
F. Siebel, W. Mauser, S. Moutari and M. Rascle,
Balanced vehicular traffic at a bottleneck, Mathematical and Computer Modelling, 49 (2009), 689-702.
doi: 10.1016/j.mcm.2008.01.006. |
[27] |
P. Spellucci,
A new technique for inconsistent QP problems in the SQP method, Mathematical Methods of Operations Research, 47 (1998), 355-400.
doi: 10.1007/BF01198402. |
[28] |
P. Spellucci,
An SQP method for general nonlinear programs using only equality constrained subproblems, Mathematical Programming, 82 (1998), 413-448.
doi: 10.1007/BF01580078. |
[29] |
A. Srivastava and N. Geroliminis,
Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model, Transportation Research Part C: Emerging Technologies, 30 (2013), 161-177.
doi: 10.1016/j.trc.2013.02.006. |
[30] |
M. Treiber and A. Kesting, Traffic Flow Dynamics, Data, models and simulation, Translated by Treiber and Christian Thiemann, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-32460-4. |















inflow at on-ramp in | outflow AR in | outflow LWR in | ||||
desired | actual | |||||
500 | 500 | 47.6 | 73.6 | 77.1 | 4000 | 4000 |
1000 | 1000 | 47.6 | 73.6 | 77.1 | 4500 | 4500 |
1500 | 1500 | 156.4 | 13.1 | 50.9 | 3554 | 4500 |
2000 | 1764 | 160.2 | 11.0 | 50.6 | 3527 | 4500 |
2500 | 1764 | 160.2 | 11.0 | 50.6 | 3527 | 4500 |
1000 | 1000 | 148.0 | 17.8 | 51.6 | 3629 | 4500 |
500 | 500 | 137.2 | 23.8 | 52.8 | 3762 | 4000 |
inflow at on-ramp in | outflow AR in | outflow LWR in | ||||
desired | actual | |||||
500 | 500 | 47.6 | 73.6 | 77.1 | 4000 | 4000 |
1000 | 1000 | 47.6 | 73.6 | 77.1 | 4500 | 4500 |
1500 | 1500 | 156.4 | 13.1 | 50.9 | 3554 | 4500 |
2000 | 1764 | 160.2 | 11.0 | 50.6 | 3527 | 4500 |
2500 | 1764 | 160.2 | 11.0 | 50.6 | 3527 | 4500 |
1000 | 1000 | 148.0 | 17.8 | 51.6 | 3629 | 4500 |
500 | 500 | 137.2 | 23.8 | 52.8 | 3762 | 4000 |
road | length | initial density | |||
road1 | 2 | 180 | 100 | 100 | 50 |
road2 | 1 | 180 | 50 | 100 | 50 |
road3 | 1 | 180 | 50 | 100 | 50 |
road4 | 2 | 180 | 100 | 100 | 50 |
road | length | initial density | |||
road1 | 2 | 180 | 100 | 100 | 50 |
road2 | 1 | 180 | 50 | 100 | 50 |
road3 | 1 | 180 | 50 | 100 | 50 |
road4 | 2 | 180 | 100 | 100 | 50 |
AR, | AR, | LWR | |
no control | 1871.7 | 1871.7 | 834.9 |
ramp metering only | 1325.3 | 1325.3 | 834.9 |
speed control only | 1122.8 | 872.6 | 834.9 |
both control types | 814.5 | 818.4 | 834.9 |
AR, | AR, | LWR | |
no control | 1871.7 | 1871.7 | 834.9 |
ramp metering only | 1325.3 | 1325.3 | 834.9 |
speed control only | 1122.8 | 872.6 | 834.9 |
both control types | 814.5 | 818.4 | 834.9 |
no control | opt. control, | opt. control, | |
2199.4 | 868.8 | 953.4 | |
2137.1 | 860.1 | 856.3 | |
1871.7 | 814.5 | 818.4 | |
731.4 | 731.4 | 731.4 | |
725.9 | 725.9 | 725.9 |
no control | opt. control, | opt. control, | |
2199.4 | 868.8 | 953.4 | |
2137.1 | 860.1 | 856.3 | |
1871.7 | 814.5 | 818.4 | |
731.4 | 731.4 | 731.4 | |
725.9 | 725.9 | 725.9 |
[1] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[2] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[3] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[4] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[5] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[6] |
Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[7] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[8] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[9] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[10] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[11] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[12] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[13] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[14] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[15] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[16] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[17] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[18] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[19] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[20] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]