We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.
Citation: |
N. W. Ashcroft and N. D. Mermin, Solide State Physics, Holt, Rinehart and Winston, Philadelphia, PA, 1976. | |
A. Bourgeat , A. Mikelić and S. Wright , Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994) , 19-51. | |
H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North Holland, 1973. | |
P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅰ, In Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988. | |
G. Dal Maso and L. Modica , Nonlinear stochastic homogenization, Ann. Mat. Pura Appl., 144 (1986) , 347-389. doi: 10.1007/BF01760826. | |
G. Dal Maso and L. Modica , Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., 386 (1986) , 28-42. | |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. | |
S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization, vol. 20 (eds. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University), Canberra, (1988), 59–65. | |
M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, preprint, arXiv: 1701.03505. | |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994. | |
S. M. Kozlov , The averaging of random operators, Math. Sb., 109 (1979) , 188-202. | |
L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960. | |
K. Messaoudi and G. Michaille, Stochastic homogenization of nonconvex integral functionals. Duality in the convex case, Sém. Anal. Convexe, 21 (1991), Exp. No. 14, 32 pp. | |
K. Messaoudi and G. Michaille , Stochastic homogenization of nonconvex integral functionals, RAIRO Modél. Math. Anal. Numér., 28 (1994) , 329-356. doi: 10.1051/m2an/1994280303291. | |
F. Murat , Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978) , 489-507. | |
A. Pankov , Strong $G$ -convergence of nonlinear elliptic operators and homogenization, Constantin Carathéodory: An International Tribute: (In 2 Volumes) (eds. World Scientific), Ⅰ/Ⅱ (1991) , 1075-1099. | |
A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publisher, Dordrecht, 1997. | |
G. C. Papanicolaou and S. R. S. Varadhan , Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. Ⅰ and Ⅱ, Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam., 27 (1981) , 835-873. | |
F. Peter and H. Weyl , Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97 (1927) , 737-755. doi: 10.1007/BF01447892. | |
M. Sango and J. L. Woukeng , Stochastic two-scale convergence of an integral functional, Asymptotic Anal., 73 (2011) , 97-123. | |
B. Schweizer , Averaging of flows with capillary hysteresis in stochastic porous media, European J. Appl. Math., 18 (2007) , 389-415. doi: 10.1017/S0956792507007000. | |
R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. | |
L. Tartar, Cours Peccot au College de France, Partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished, 1977. | |
M. Veneroni , Stochastic homogenization of subdifferential inclusions via scale integration, Intl. J. of Struct. Changes in Solids, 3 (2011) , 83-98. | |
A. Visintin , Scale-integration and scale-disintegration in nonlinear homogenization, Calc. Var. Partial Differential Equations, 36 (2009) , 565-590. doi: 10.1007/s00526-009-0245-2. | |
A. Visintin , Scale-transformations and homogenization of maximal monotone relations with applications, Asymptotic Anal., 82 (2013) , 233-270. | |
A. Visintin , Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations., 47 (2013) , 273-317. doi: 10.1007/s00526-012-0519-y. |