We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.
Citation: |
N. W. Ashcroft and N. D. Mermin,
Solide State Physics, Holt, Rinehart and Winston, Philadelphia, PA, 1976.
![]() |
|
A. Bourgeat
, A. Mikelić
and S. Wright
, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994)
, 19-51.
![]() ![]() |
|
H. Brezis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North Holland, 1973.
![]() ![]() |
|
P. G. Ciarlet,
Mathematical Elasticity. Vol. Ⅰ, In Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988.
![]() ![]() |
|
G. Dal Maso
and L. Modica
, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl., 144 (1986)
, 347-389.
doi: 10.1007/BF01760826.![]() ![]() ![]() |
|
G. Dal Maso
and L. Modica
, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math., 386 (1986)
, 28-42.
![]() ![]() |
|
L. C. Evans,
Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
![]() ![]() |
|
S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization, vol. 20 (eds. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University), Canberra, (1988), 59–65.
![]() ![]() |
|
M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, preprint, arXiv: 1701.03505.
![]() |
|
V. V. Jikov, S. M. Kozlov and O. A. Oleinik,
Homogenization of Differential Operators and Integral Functionals, Springer, 1994.
![]() |
|
S. M. Kozlov
, The averaging of random operators, Math. Sb., 109 (1979)
, 188-202.
![]() ![]() |
|
L. Landau and E. Lifshitz,
Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.
![]() ![]() |
|
K. Messaoudi and G. Michaille, Stochastic homogenization of nonconvex integral functionals. Duality in the convex case,
Sém. Anal. Convexe, 21 (1991), Exp. No. 14, 32 pp.
![]() ![]() |
|
K. Messaoudi
and G. Michaille
, Stochastic homogenization of nonconvex integral functionals, RAIRO Modél. Math. Anal. Numér., 28 (1994)
, 329-356.
doi: 10.1051/m2an/1994280303291.![]() ![]() ![]() |
|
F. Murat
, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978)
, 489-507.
![]() ![]() |
|
A. Pankov
, Strong $G$
-convergence of nonlinear elliptic operators and homogenization, Constantin Carathéodory: An International Tribute: (In 2 Volumes) (eds. World Scientific), Ⅰ/Ⅱ (1991)
, 1075-1099.
![]() ![]() |
|
A. Pankov,
G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publisher, Dordrecht, 1997.
![]() ![]() |
|
G. C. Papanicolaou
and S. R. S. Varadhan
, Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. Ⅰ and Ⅱ, Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam., 27 (1981)
, 835-873.
![]() ![]() |
|
F. Peter
and H. Weyl
, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann., 97 (1927)
, 737-755.
doi: 10.1007/BF01447892.![]() ![]() ![]() |
|
M. Sango
and J. L. Woukeng
, Stochastic two-scale convergence of an integral functional, Asymptotic Anal., 73 (2011)
, 97-123.
![]() ![]() |
|
B. Schweizer
, Averaging of flows with capillary hysteresis in stochastic porous media, European J. Appl. Math., 18 (2007)
, 389-415.
doi: 10.1017/S0956792507007000.![]() ![]() ![]() |
|
R. E. Showalter,
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
![]() ![]() |
|
L. Tartar,
Cours Peccot au College de France, Partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished, 1977.
![]() |
|
M. Veneroni
, Stochastic homogenization of subdifferential inclusions via scale integration, Intl. J. of Struct. Changes in Solids, 3 (2011)
, 83-98.
![]() |
|
A. Visintin
, Scale-integration and scale-disintegration in nonlinear homogenization, Calc. Var. Partial Differential Equations, 36 (2009)
, 565-590.
doi: 10.1007/s00526-009-0245-2.![]() ![]() ![]() |
|
A. Visintin
, Scale-transformations and homogenization of maximal monotone relations with applications, Asymptotic Anal., 82 (2013)
, 233-270.
![]() ![]() |
|
A. Visintin
, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations., 47 (2013)
, 273-317.
doi: 10.1007/s00526-012-0519-y.![]() ![]() ![]() |