This paper approaches the question of existence and uniqueness of stationary solutions to a semilinear hyperbolic-parabolic system and the study of the asymptotic behaviour of global solutions. The system is a model for some biological phenomena evolving on a network composed by a finite number of nodes and oriented arcs. The transmission conditions for the unknowns, set at each inner node, are crucial features of the model.
Citation: |
W. Alt
and J. M. Greemberg
, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987)
, 235-258.
doi: 10.1090/S0002-9947-1987-0871674-4.![]() ![]() ![]() |
|
R. Borsche
, S. Gottlich
, A. Klar
and P. Schillen
, The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014)
, 221-247.
doi: 10.1142/S0218202513400071.![]() ![]() ![]() |
|
G. Bretti
, R. Natalini
and M. Ribot
, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014)
, 231-258.
doi: 10.1051/m2an/2013098.![]() ![]() ![]() |
|
T. Cazenave and A. Haraux,
An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998.
![]() ![]() |
|
G. M. Coclite
, M. Garavello
and B. Piccoli
, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005)
, 1862-1886.
doi: 10.1137/S0036141004402683.![]() ![]() ![]() |
|
L. Corrias
and F. Camilli
, Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017)
, 459-480.
doi: 10.1016/j.matpur.2017.07.003.![]() ![]() ![]() |
|
R. Dager and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Vol. 50 of Mathematiques & Applications [Mathematics & Applications] Springer-Verlag, Berlin, 2006.
![]() ![]() |
|
Y. Dolak
and T. Hillen
, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation, J. Math. Biol., 46 (2003)
, 153-170.
doi: 10.1007/s00285-002-0173-7.![]() ![]() ![]() |
|
F. Filbet
, P. Laurencot
and B. Pertame
, Derivation of hyperbolic model for chemosensitive movement, J. Math. Biol., 50 (2005)
, 189-207.
doi: 10.1007/s00285-004-0286-2.![]() ![]() ![]() |
|
M. Garavello and B. Piccoli,
Traffic Flow on Networks -Conservation Laws Models, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
![]() ![]() |
|
F. R. Guarguaglini
, C. Mascia
, R. Natalini
and M. Ribot
, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009)
, 39-76.
doi: 10.3934/dcdsb.2009.12.39.![]() ![]() ![]() |
|
F. R. Guarguaglini
and R. Natalini
, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015)
, 4652-4671.
doi: 10.1137/140997099.![]() ![]() ![]() |
|
B. A. C. Harley
, H. Kim
, M. H. Zaman
, I. V. Yannas
, D. A. Lauffenburger
and L. J. Gibson
, Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008)
, 4013-4024.
![]() |
|
T. Hillen
, Hyperbolic models for chemosensitive mevement, Math. Models Methods Appl. Sci., 12 (2002)
, 1007-1034.
doi: 10.1142/S0218202502002008.![]() ![]() ![]() |
|
T. Hillen
, C. Rhode
and F. Lutscher
, Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 260 (2001)
, 173-199.
doi: 10.1006/jmaa.2001.7447.![]() ![]() ![]() |
|
T. Hillen
and A. Stevens
, Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000)
, 409-433.
doi: 10.1016/S0362-546X(99)00284-9.![]() ![]() ![]() |
|
D. Horstmann
, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I.Jahresber.Deutsch Math-Verein, 105 (2003)
, 103-165.
![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970)
, 399-415.
![]() |
|
M. Kramar
and E. Sikolya
, Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005)
, 139-162.
doi: 10.1007/s00209-004-0695-3.![]() ![]() ![]() |
|
B. B. Mandal
and S. C. Kundu
, Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009)
, 2956-2965.
![]() |
|
D. Mugnolo,
Simigroup Methods for Evolutions Equations on Networks, Springer, Berlin, 2014.
![]() ![]() |
|
J. D. Murray,
Mathematical Biology. I An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17 Springer Verlag, New York, 2002; Mathematical Biology. Ⅱ Spatial models and biomedical applications, Third edition. Interdisciplinary Applied Mathematics, 18 Springer Verlag, New York, 2003.
![]() ![]() |
|
B. Perthame,
Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, 2007.
![]() ![]() |
|
L. A. Segel
, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J.Appl.Math., 32 (1977)
, 653-665.
![]() |
|
C. Spadaccio
, A. Rainer
, S. De Porcellinis
, M. Centola
, F. De Marco
, M. Chello
, M. Trombetta
and J. A. Genovese
, A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc., (2010)
, 843-846.
![]() |
|
J. Valein
and E. Zuazua
, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009)
, 2771-2797.
doi: 10.1137/080733590.![]() ![]() ![]() |
Example of acyclic network; the highlighted arcs form the path linking the nodes
Example: the highlighted arcs form the path from the outer point