
-
Previous Article
On Lennard-Jones systems with finite range interactions and their asymptotic analysis
- NHM Home
- This Issue
-
Next Article
Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network
On a vorticity-based formulation for reaction-diffusion-Brinkman systems
1. | GIMNAP, Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile |
2. | Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33076 Bordeaux Cedex, France |
3. | Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Concepción, Chile |
4. | Mathematical Institute, University of Oxford, A. Wiles Building, Woodstock Road, Oxford OX2 6GG, UK |
We are interested in modelling the interaction of bacteria and certain nutrient concentration within a porous medium admitting viscous flow. The governing equations in primal-mixed form consist of an advection-reaction-diffusion system representing the bacteria-chemical mass exchange, coupled to the Brinkman problem written in terms of fluid vorticity, velocity and pressure, and describing the flow patterns driven by an external source depending on the local distribution of the chemical species. A priori stability bounds are derived for the uncoupled problems, and the solvability of the full system is analysed using a fixed-point approach. We introduce a primal-mixed finite element method to numerically solve the model equations, employing a primal scheme with piecewise linear approximation of the reaction-diffusion unknowns, while the discrete flow problem uses a mixed approach based on Raviart-Thomas elements for velocity, Nédélec elements for vorticity, and piecewise constant pressure approximations. In particular, this choice produces exactly divergence-free velocity approximations. We establish existence of discrete solutions and show their convergence to the weak solution of the continuous coupled problem. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme.
References:
[1] |
A. Agosti, L. Formaggia and A. Scotti,
Analysis of a model for precipitation and dissolution coupled with a Darcy flux, J. Math. Anal. Appl., 431 (2015), 752-781.
doi: 10.1016/j.jmaa.2015.06.003. |
[2] |
A. Agouzal and K. Allali,
Numerical analysis of reaction front propagation model under Boussinesq approximation, Math. Meth. Appl. Sci., 26 (2003), 1529-1572.
doi: 10.1002/mma.425. |
[3] |
V. Anaya, G. N. Gatica, D. Mora and R. Ruiz-Baier,
An augmented velocity-vorticity-pressure formulation for the Brinkman equations, Int. J. Numer. Methods Fluids, 79 (2015), 109-137.
doi: 10.1002/fld.4041. |
[4] |
V. Anaya, D. Mora, R. Oyarzúa and R. Ruiz-Baier,
A priori and a posteriori error analysis of a fully-mixed scheme for the Brinkman problem, Numer. Math., 133 (2016), 781-817.
doi: 10.1007/s00211-015-0758-x. |
[5] |
V. Anaya, D. Mora, C. Reales and R. Ruiz-Baier,
Stabilized mixed approximation of axisymmetric Brinkman flows, ESAIM: Math. Model. Numer. Anal., 49 (2015), 855-874.
doi: 10.1051/m2an/2015011. |
[6] |
V. Anaya, D. Mora and R. Ruiz-Baier,
Pure vorticity formulation and Galerkin discretization for the Brinkman equations, IMA J. Numer. Anal., 37 (2017), 2020-2041.
doi: 10.1093/imanum/drw056. |
[7] |
J.-L. Auriault,
On the domain of validity of Brinkman's equation, Transp. Porous Med., 79 (2009), 215-223.
doi: 10.1007/s11242-008-9308-7. |
[8] |
J. W. Barret and P. Knabner,
Finite element approximation of the transport of reactive solutes in porous media. Part Ⅱ: error estimates for equilibrium adsorption processes, SIAM J. Numer. Anal., 34 (1997), 455-479.
doi: 10.1137/S0036142993258191. |
[9] |
P. Biscari, S. Minisini, D. Pierotti, G. Verzini and P. Zunino,
Controlled release with finite dissolution rate, SIAM J. Appl. Math., 71 (2011), 731-752.
doi: 10.1137/100790288. |
[10] |
H. Brezis,
Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983. |
[11] |
G. Chamoun, M. Saad and R. Talhouk,
A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion, Comput. Math. Appl., 68 (2014), 1052-1070.
doi: 10.1016/j.camwa.2014.04.010. |
[12] |
C. M. Elliott and B. Stinner,
A surface phase field model for two-phase biological membranes, SIAM J. Appl. Math., 70 (2010), 2904-2928.
doi: 10.1137/090779917. |
[13] |
A. Ern and V. Giovangigli,
Multicomponent Transport Algorithms, vol. 24 of Lecture Notes in Physics, New Series Monographs, Springer-Verlag, Heidelberg, 1994. |
[14] |
A. Ern and J. L,
Guermond and L. Quartapelle, Vorticity-velocity formulations of the Stokes problem in 3D, Math. Methods Appl. Sci., 22 (1999), 531-546.
doi: 10.1002/(SICI)1099-1476(199904)22:6<531::AID-MMA51>3.0.CO;2-9. |
[15] |
L. Formaggia, S. Minisini and P. Zunino,
Modelling polymeric controlled drug release and transport phenomena in the arterial tissue, Math. Models Methods Appl. Sci., 20 (2010), 1759-1786.
doi: 10.1142/S0218202510004787. |
[16] |
A. C. Fowler,
Convective diffusion on an enzyme reaction, SIAM J. Appl. Math., 33 (1977), 289-297.
doi: 10.1137/0133018. |
[17] |
G. N. Gatica,
A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, Springer Briefs in Mathematics, Springer, Cham Heidelberg New York Dordrecht London, 2014. |
[18] |
A. Goldbeter, G. Dupont and M. J. Berridge,
Minimal model for signal-induced $\mathrm{Ca}^{2+}$ oscillations and for their frequency encoding through protein phosphorylation, Proc. Natl. Acad. Sci. USA, 87 (1990), 1461-1465.
doi: 10.1073/pnas.87.4.1461. |
[19] |
Q. Hong and J. Krauss,
Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem, SIAM J. Numer. Anal., 54 (2016), 2750-2774.
doi: 10.1137/14099810X. |
[20] |
K. Kumar, I. S. Pop and F. A. Radu,
Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media, Numer. Math., 127 (2014), 715-749.
doi: 10.1007/s00211-013-0601-1. |
[21] |
T. Kuusi, L. Monsaingeon and J. Videman,
Systems of partial differential equations in porous medium, Nonl. Anal., 133 (2016), 79-101.
doi: 10.1016/j.na.2015.11.015. |
[22] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1988. Google Scholar |
[23] |
H. G. Lee and J. Kim,
Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber, Eur. J. Mech. B/Fluids, 52 (2015), 120-130.
doi: 10.1016/j.euromechflu.2015.03.002. |
[24] |
P. Lenarda, M. Paggi and R. Ruiz Baier,
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows, J. Comput. Phys., 344 (2017), 281-302.
doi: 10.1016/j.jcp.2017.05.011. |
[25] |
H. Murakawa,
Error estimates for discrete-time approximations of nonlinear cross-diffusion systems, SIAM J. Numer. Anal., 52 (2014), 955-974.
doi: 10.1137/130911019. |
[26] |
C. Nagaiah, S. Rüdiger, G. Warnecke and M. Falcke,
Adaptive numerical simulation of intracellular calcium dynamics using domain decomposition methods, Appl. Numer. Math., 58 (2008), 1658-1674.
doi: 10.1016/j.apnum.2007.10.003. |
[27] |
F. A. Radu and I. S. Pop,
Newton method for reactive solute transport with equilibrium sorption in porous media, J. Comput. and Appl. Math., 234 (2010), 2118-2127.
doi: 10.1016/j.cam.2009.08.070. |
[28] |
R. Ruiz-Baier,
Primal-mixed formulations for reaction-diffusion systems on deforming domains, J. Comput. Phys., 299 (2015), 320-338.
doi: 10.1016/j.jcp.2015.07.018. |
[29] |
R. Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi and A. Quarteroni,
Mathematical modeling of active contraction in isolated cardiomyocytes, Math. Medicine Biol., 31 (2014), 259-283.
doi: 10.1093/imammb/dqt009. |
[30] |
R. Ruiz-Baier and I. Lunati,
Mixed finite element -discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys., 322 (2016), 666-688.
doi: 10.1016/j.jcp.2016.06.054. |
[31] |
B. Saad and M. Saad,
A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media, Numer. Math., 129 (2015), 691-722.
doi: 10.1007/s00211-014-0651-z. |
[32] |
J. N. Shadid, R. S. Tuminaro and H. F. Walker,
An inexact Newton method for fully coupled solution of the Navier-Stokes equations with heat and mass transport, J. Comput. Phys., 137 (1997), 155-185.
doi: 10.1006/jcph.1997.5798. |
[33] |
J. Simon,
Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[34] |
M. Slodicka,
A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media, SIAM J. Sci. Comput., 23 (2002), 1593-1614.
doi: 10.1137/S1064827500381860. |
[35] |
G. Tauriello and P. Koumoutsakos,
Coupling remeshed particle and phase field methods for the simulation of reaction-diffusion on the surface and the interior of deforming geometries, SIAM J. Sci. Comput., 35 (2013), B1285-B1303.
doi: 10.1137/130906441. |
[36] |
R. Temam,
Navier-Stokes Equations. Theory and Numerical Analysis, Reedition in the AMS-Chelsea Series, AMS, Providence, 2001. |
[37] |
V. Thomée,
Galerkin Finite Element Methods for Parabolic Problems, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2006. |
[38] |
P. Tracqui and J. Ohayon,
An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes, Phil. Trans. Royal Soc. London A, 367 (2009), 4887-4905.
doi: 10.1098/rsta.2009.0149. |
show all references
References:
[1] |
A. Agosti, L. Formaggia and A. Scotti,
Analysis of a model for precipitation and dissolution coupled with a Darcy flux, J. Math. Anal. Appl., 431 (2015), 752-781.
doi: 10.1016/j.jmaa.2015.06.003. |
[2] |
A. Agouzal and K. Allali,
Numerical analysis of reaction front propagation model under Boussinesq approximation, Math. Meth. Appl. Sci., 26 (2003), 1529-1572.
doi: 10.1002/mma.425. |
[3] |
V. Anaya, G. N. Gatica, D. Mora and R. Ruiz-Baier,
An augmented velocity-vorticity-pressure formulation for the Brinkman equations, Int. J. Numer. Methods Fluids, 79 (2015), 109-137.
doi: 10.1002/fld.4041. |
[4] |
V. Anaya, D. Mora, R. Oyarzúa and R. Ruiz-Baier,
A priori and a posteriori error analysis of a fully-mixed scheme for the Brinkman problem, Numer. Math., 133 (2016), 781-817.
doi: 10.1007/s00211-015-0758-x. |
[5] |
V. Anaya, D. Mora, C. Reales and R. Ruiz-Baier,
Stabilized mixed approximation of axisymmetric Brinkman flows, ESAIM: Math. Model. Numer. Anal., 49 (2015), 855-874.
doi: 10.1051/m2an/2015011. |
[6] |
V. Anaya, D. Mora and R. Ruiz-Baier,
Pure vorticity formulation and Galerkin discretization for the Brinkman equations, IMA J. Numer. Anal., 37 (2017), 2020-2041.
doi: 10.1093/imanum/drw056. |
[7] |
J.-L. Auriault,
On the domain of validity of Brinkman's equation, Transp. Porous Med., 79 (2009), 215-223.
doi: 10.1007/s11242-008-9308-7. |
[8] |
J. W. Barret and P. Knabner,
Finite element approximation of the transport of reactive solutes in porous media. Part Ⅱ: error estimates for equilibrium adsorption processes, SIAM J. Numer. Anal., 34 (1997), 455-479.
doi: 10.1137/S0036142993258191. |
[9] |
P. Biscari, S. Minisini, D. Pierotti, G. Verzini and P. Zunino,
Controlled release with finite dissolution rate, SIAM J. Appl. Math., 71 (2011), 731-752.
doi: 10.1137/100790288. |
[10] |
H. Brezis,
Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983. |
[11] |
G. Chamoun, M. Saad and R. Talhouk,
A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion, Comput. Math. Appl., 68 (2014), 1052-1070.
doi: 10.1016/j.camwa.2014.04.010. |
[12] |
C. M. Elliott and B. Stinner,
A surface phase field model for two-phase biological membranes, SIAM J. Appl. Math., 70 (2010), 2904-2928.
doi: 10.1137/090779917. |
[13] |
A. Ern and V. Giovangigli,
Multicomponent Transport Algorithms, vol. 24 of Lecture Notes in Physics, New Series Monographs, Springer-Verlag, Heidelberg, 1994. |
[14] |
A. Ern and J. L,
Guermond and L. Quartapelle, Vorticity-velocity formulations of the Stokes problem in 3D, Math. Methods Appl. Sci., 22 (1999), 531-546.
doi: 10.1002/(SICI)1099-1476(199904)22:6<531::AID-MMA51>3.0.CO;2-9. |
[15] |
L. Formaggia, S. Minisini and P. Zunino,
Modelling polymeric controlled drug release and transport phenomena in the arterial tissue, Math. Models Methods Appl. Sci., 20 (2010), 1759-1786.
doi: 10.1142/S0218202510004787. |
[16] |
A. C. Fowler,
Convective diffusion on an enzyme reaction, SIAM J. Appl. Math., 33 (1977), 289-297.
doi: 10.1137/0133018. |
[17] |
G. N. Gatica,
A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, Springer Briefs in Mathematics, Springer, Cham Heidelberg New York Dordrecht London, 2014. |
[18] |
A. Goldbeter, G. Dupont and M. J. Berridge,
Minimal model for signal-induced $\mathrm{Ca}^{2+}$ oscillations and for their frequency encoding through protein phosphorylation, Proc. Natl. Acad. Sci. USA, 87 (1990), 1461-1465.
doi: 10.1073/pnas.87.4.1461. |
[19] |
Q. Hong and J. Krauss,
Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem, SIAM J. Numer. Anal., 54 (2016), 2750-2774.
doi: 10.1137/14099810X. |
[20] |
K. Kumar, I. S. Pop and F. A. Radu,
Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media, Numer. Math., 127 (2014), 715-749.
doi: 10.1007/s00211-013-0601-1. |
[21] |
T. Kuusi, L. Monsaingeon and J. Videman,
Systems of partial differential equations in porous medium, Nonl. Anal., 133 (2016), 79-101.
doi: 10.1016/j.na.2015.11.015. |
[22] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1988. Google Scholar |
[23] |
H. G. Lee and J. Kim,
Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber, Eur. J. Mech. B/Fluids, 52 (2015), 120-130.
doi: 10.1016/j.euromechflu.2015.03.002. |
[24] |
P. Lenarda, M. Paggi and R. Ruiz Baier,
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows, J. Comput. Phys., 344 (2017), 281-302.
doi: 10.1016/j.jcp.2017.05.011. |
[25] |
H. Murakawa,
Error estimates for discrete-time approximations of nonlinear cross-diffusion systems, SIAM J. Numer. Anal., 52 (2014), 955-974.
doi: 10.1137/130911019. |
[26] |
C. Nagaiah, S. Rüdiger, G. Warnecke and M. Falcke,
Adaptive numerical simulation of intracellular calcium dynamics using domain decomposition methods, Appl. Numer. Math., 58 (2008), 1658-1674.
doi: 10.1016/j.apnum.2007.10.003. |
[27] |
F. A. Radu and I. S. Pop,
Newton method for reactive solute transport with equilibrium sorption in porous media, J. Comput. and Appl. Math., 234 (2010), 2118-2127.
doi: 10.1016/j.cam.2009.08.070. |
[28] |
R. Ruiz-Baier,
Primal-mixed formulations for reaction-diffusion systems on deforming domains, J. Comput. Phys., 299 (2015), 320-338.
doi: 10.1016/j.jcp.2015.07.018. |
[29] |
R. Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi and A. Quarteroni,
Mathematical modeling of active contraction in isolated cardiomyocytes, Math. Medicine Biol., 31 (2014), 259-283.
doi: 10.1093/imammb/dqt009. |
[30] |
R. Ruiz-Baier and I. Lunati,
Mixed finite element -discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys., 322 (2016), 666-688.
doi: 10.1016/j.jcp.2016.06.054. |
[31] |
B. Saad and M. Saad,
A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media, Numer. Math., 129 (2015), 691-722.
doi: 10.1007/s00211-014-0651-z. |
[32] |
J. N. Shadid, R. S. Tuminaro and H. F. Walker,
An inexact Newton method for fully coupled solution of the Navier-Stokes equations with heat and mass transport, J. Comput. Phys., 137 (1997), 155-185.
doi: 10.1006/jcph.1997.5798. |
[33] |
J. Simon,
Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[34] |
M. Slodicka,
A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media, SIAM J. Sci. Comput., 23 (2002), 1593-1614.
doi: 10.1137/S1064827500381860. |
[35] |
G. Tauriello and P. Koumoutsakos,
Coupling remeshed particle and phase field methods for the simulation of reaction-diffusion on the surface and the interior of deforming geometries, SIAM J. Sci. Comput., 35 (2013), B1285-B1303.
doi: 10.1137/130906441. |
[36] |
R. Temam,
Navier-Stokes Equations. Theory and Numerical Analysis, Reedition in the AMS-Chelsea Series, AMS, Providence, 2001. |
[37] |
V. Thomée,
Galerkin Finite Element Methods for Parabolic Problems, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2006. |
[38] |
P. Tracqui and J. Ohayon,
An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes, Phil. Trans. Royal Soc. London A, 367 (2009), 4887-4905.
doi: 10.1098/rsta.2009.0149. |






[1] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[2] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[5] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[6] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021085 |
[7] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[8] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[9] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[10] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[11] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[12] |
Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032 |
[13] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[14] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[15] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[16] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[17] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[18] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[19] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[20] |
Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021034 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]